
Proceedings of the APL 2001 Conference

C l a s s i f i c a t i o n T r e e s in APL:
Implementation and Application

Alexander Skomorokhov and V lad imi r Kut insky
Institute of Nuclear Power Engineering

P.O. Box 5061, Obninsk-5
Kaluga Region, 24.9020, Russia

askom@obninsk.com, kutinskyv@obninsk.com

Abstract
This paper considers the problem o f classification

tree based data analysis. Among the topics discussed in
the paper axe: growing a classification tree using
CART style exhaustive search for spl/ts, selecting the
tight size for the tree using minimal cost-complexity
cross-validation pruning, and examples o f the applica-
tion o f classification trees.

The algorithms are implemented in Dyalog APL.

Application example is based on data from vibra-
tion monitoring equipment installed on a Nuclear
Power Plant in Novovoronehz, Russia and includes
classification of v ib~t ion spectra of steam generators
or coolant pumps and classification o f vibration spec-
tra of steam generators o f different coolant loops.

Keywords: Data Mining, Classification Trees,
Pruning, Cross-validation, Vibration Monitoring.

Xntroduction
Tree-based models provide a number o f benefits:

• A natural approach to join processing of both
categorical and continuous variables;

• Important information is revealed as the derision
rules are cons matted;

• Easy interpretation o f the results;

• Large datasets (both the number o f cases and the
number of predictors) can be dealt with.

What is a Clasaiificatio# T ,~e?A Classification Tree is
a hierarchical set of classification furies, which, in case
of numeric predictors ordy, axe o f the form:

Permission m make digital or hard copies o f all or part o f this work
for pea'sonal or classroom use is granted without fee provided that
copies are not made or dislributed for profit or c~mmercial
advantage, and that copies beas this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers, or to
redisuibut¢ to lists, requires prior specific permission and/or a fee.
API.,01, 06/01, New E[aven, c r U S A
02001 A C M 1-58115-419-3 10110006 $5.01)

i f x~ _< b~ a n d x 3 > b 2

then y is most likely to be %

where bi are some thresholds.

Classification Trees can work with both numeric
and factor prediction variables. In this case the classi-
fication rules are o f the form:

x, _<b, x, {s.D }
then y is m o s t l ikely to be c 2

Another feature of Classification Trees is their hi-
erarchical nature, i.e., the ability of classification trees
to examine the effects of predictor variables one at a
time, rather than just all at once, as it is in case o f dis-
criminant analysis.

Classification Trees are displayed graphically, mak-
ing their interpretation much easier than a strictly nu-
merical presentation

Ira stma, Classification Trees are very attractive be-
cause they provide a simple and dear methodology for
data analysis.

Growing the Tree
Input data

Let us consider a number o f objects
A = {a 1, a2,. . . , a s }, described by attributes

{ . ra , x2 , . . . , x , , y }. The x I are called classification or

predictor variables and y is a response variable. Pre-

dictors can be both numeric and factor variables. Let
us consider also a number of classes
C = {c I , c z c t }. Response variable .y indicates the

dass o f each object in A .

For illustration purposes we will use an artificial
data set represented in Table 1.

Classification Trees in APL 101

Proceed ings of the APL 2001 Con fe rence

T a b l e 1. E x a m p l e data set

N Xl X2 X9 'X4 Y

1 5.1 0.5 A 3 1

2 5.1 4.5 B 3 1

3 4.4 4 C 3 1

4 5.4 3.5 C 4 . 5 1 1
5 5 3.5 D 4 , 1

6 7.7 5 A 1.5 2

7 6.1 15.5 B 3.5 2

8 6.8 0.5 B 2.5 2

9 5.6 4 B 3.5 2
I

10 6.7 5 A 1.5 2

11 6.4 1 D 0.5 3 I
12 6 4.5 , C 2.5 3 I

13 6.7 2 C 3 3

14 5.5 4.5 D 5 3

15 5.5 0.5 D 0.5 3

T h e r e are a to ta l o f 15 objec ts C£able 1 rows) , de-
sc r ibed wi th 4 at t r ibutes . E a c h ob jec t be longs to o n e
o f t h ree classes, i nd /ca ted by the var iable Y. P red ic to r s
X I , ~ and X 4 are c o n d n u o u s variables. P r e d i c t o r X 3
is a categorical var iable wi th poss ib le l e v d s taken f r o m
set {A,B,C,D}.

I n A P L we r e p r e s e n t c o n t i n u o u s a n d o r d e r e d
variables as s imple n u m e r i c vec tors . F o r categorical
predic tozs the natura l r ep r e sen t a t i on is a ne s t ed char-
ac ter v e c t o r o f va lue labels. T h e same is t rue fo r a
r e s p o n s e var iable o f class labels. B u t to s implify the
c o d e we e n u m e r a t e the classes and use a s imple nu-
mer i c v e c t o r o f class n u m b e r s instead. T h e data set,
s h o w n in T a b l e 1, is a ne s t ed matt:ix called d a t a :

pdata
15 5

.data
2

dlsp data[1 2;]

I 5 .1 o . s IAI 3 1
! _ I
. . | .

I s . 1 4 .5 I B i 3 1

| 6

N o t e tha t scalars f r o m set {A,B,C,D} a te pre-
s en t ed as o n e d e m e n t charac te r vec tors , to a l low lo n g
names i f necessary.

Tree-based model
A CLassification T r e e c o n s t r u c t e d fo r this data is

s h o w n in F /gure 1.

~ L 3

F i g u r e 1: CLassification T r e e fo r artificial data set

Th is f igure a n d o th e r t ree p lo t s in this p a p e r were
c rea ted us ing the R Statistical sy s t em [2]. R is " G N U
S'" - a Language and e n v i r o n m e n t fo r statistical c o m -
p u t i n g a n d graph/cs. Th i s sys t em is f reely available f o r
m a j o r pLatforms, inc lud ing W i n d o w s a n d L / n u x oper -
a t ing systems. R is similar to the award -winn ing S
sys tem [8], w h i c h was d e v e l o p e d at Bell Labora to r i e s
b y J o h n C h a m b e r s e t al. I t p ro v id e s a "wide var ie ty o f
statistical a n d graphica l t echrdques Clinear and non l in -
ear mode l ing , statistical tests, t ime series analysis, clas-
sification, clustering, etc.) a n d a r ich se t o f func t ions to
crea te an d exp lo re t zee-based mode l s . W e us ed R and
S sys tems to val idate the A P L so f tw a re d e v e l o p e d in
this paper .

Possible splits
G r o w i n g the tree p r o c e e d s sequentially. As the

s t ruc ture o f t rees is hierarchical , splits are se lec ted o n e
at a t ime, s tar t ing wi th the spli t at the r o o t n o d e a n d
c o n t i n u i n g w i th spl/ts o f the resu l t ing cchild nodes ,
unt i l sp l i tung s tops. T h o s e child n o d e s w h i c h have n o t
b e e n spl/t b e c o m e te rmina l nodes .

T h e d i f f e r en t m e t h o d s o f spl/t se lec t ion are dis-
cussed in the p a p e r [1].

L e t us s tar t f r o m a s imple exarnple o f select ing the
bes t split o f a single c o n t i n u o u s variable .

(x c) ~ - (~ a) C 4 / 1 2)
mX C

1. 2 3 q. 5 6 7 8
:1. 1. 1 ::1. 2 2 2 2

Variable c r ep resen t s the class of several objects ,
an d w r i , b l e x is an a t t r ibu te to b e u s e d fo r classifica-
t ion. I t is clear tha t t he bes t pa r t i t i on /s g iven by

102 Alexander Skomorokhov and Vladimir Kut insky

Proceedings of the APL 2001 Conference

xSL~. 5. In ou t case, the variable x has L=8 leveJs and
there are a total o f L - I possible splits. To sdec t the
best one we need a cfitczion to compare the different
splits. Tha t kind of cczitczion is based on the rrdsdassi-
fication rate. The best is a split which produces pure
nodes. A pure node is a node that contains objects o f
one class ordy.

F o r categorical predictors the consideration is a bit
more complex• We have discussed this topic in an-
other paper [4]. Le t us consider an exarnple o f cate-
gozical variable x with a set o f values {A,B,C,D}. The
split condition may be xe{A,B} ('Se belongs to a subset
{A,B} ofpossible values'). The left child node is the set
o f cases for which this condit ion is true. The f ight
child node condi t ion may be considered either as the
left node condi t ion negation or as xe{D,C}, because
set {D,C} is a complement o f set {A,B}.

T o try different splits with a categorical predictor
we have to create a set o f possible subsets o f its values.
The number o f all possible subsets is equal to 2 L,
where L is the nurnbet o f categorical variable levels.
We do no t need an empty subset and a subset equal to
a whole set o f levds. We also do no t need to keep
bo th subsets, i f one o f a pair is a compl iment o f an-
other. For instance, splits x e { A } and x¢{B,C,D}
produce the same child nodes, but in different left to
fight orde_t.

The total number o f useful subsets is equal to

2 L'4 - 1. These subsets may be generated using func-
tion Subse t s :

[0] z~-Subsets xll;n
[i] x~-Unlque x
[2] l÷(np2)Tt2*n~-px
[3] l~-(-(+~i)(o,n,n-l)/l
C4] I÷c[1]i
[5] z~-''
[6] Z : z÷z. c÷./
[7] I÷i-Z,-Z
[8] - ~ (0 < p /) / Z
[9] z ÷ z / " c x

A well-known A P L idiom geenerates a list o f
unique values o f a rectos:

[0] u÷Unlque x
[i] u~-((xtx)=tpx)/x

T h e funct ion S u . b s e t,s" takes a nes ted character
vector o f a categozical predictor as its ziglat a rgument
and returns a nested vector o f possible subsets. For
instance:

dlsp SuJ~sets data[;3]
=-~ .

I l .-~. l l .-~- l l .-~. -~-. l l .-~. l
I I IDl l I ICI I I ICl IDI I I Ial I
I I i _ l I I ' - ' I I ' - ' ' - ' I I ' - ' I
I I (. . . . I | { I I (. I I [. . . . I

l i e .

I I I + - I I . - ~ - I I
I I B I I D I I I l a l I C I I I I A I I I
I I I I I ' - ' I I

. !

Deviance
Let us count the n u mb e r o f objects o f each c/ass

at some node N i a n d denote it as n~,; for a da s s j . The

total n u mb e r o f objects for this node is n~ = Z no "
J

N o w we may estimate probabilities p? o f each class at

n#
this node as p# = The purity o f a node i may be

nt

then characterized by entropy:

H i = - 2 ~ p#log2 P0
J

which equals zero for a pure node (note that O×/o~O
gives 0) and takes some positive value for a mixture o f
classes. Tha t means that we have to select a split that
minimizes entropy. I t may be illustrated with entropy
values for different probabilities o f 2 classes at a given
node:

p÷(.5 .5)(.7 .3)(.9 .1)(.999 .001)
(- 2 x+l~0.2®z0}"p

2 1 . 7 6 2 5 8 1 7 9 0 . 9 3 7 9 9 1 1 8 7 2 0 . 0 2 2 8 1 5 5 1 5 4 7

The most pure distribution occurs when pil =0.999

and minimum entropy whenp~=O.O01.

In the construction of tree models, another crite-
rion, known as ~Wdance [3], is used more often. For a
given node i, deviance is given by:

D i = - 2 ~ n # log p #
J

Deviance has a value o f zero value for a pure
node. I t is very dose to ent ropy but uses multiplier n~

instead o f p#, The mean.hag o f this difference will be
dea r a bit latex.

N o w consider a node i splitting into n o d e s j and k.
I f the corresponding values o f deviance are denoted as
Di] ~l and D~ then the reduct ion in deviance is

D i - D i - D k . The goal is to select a split, wkich

maximizes the reduct ion in deviance.

Classification Trees in APL 103

P r o c e e d i n g s o f t h e APL 2 0 0 1 C o n f e r e n c e

Deviance is calculated with the following APL
function:

[o] d~-Devlance class:n;p
[1] n~-+l(Unlque class)°.=class
[2] p÷n÷pclass
[3] d~--2x+/n~2®p

The right argument is a vector o f class indices and
estimates the number o f objects o f each class (vector
n) and corresponding probabilities (vector p).

Let us now return to out previous example:
c

1 1 1 1 2 2 2 2

+d÷=Devlance (t-l+pc){(a÷~)(=$s)}"cc
0 1 3 , 7 9 3 1 9 3 9
0 1 1 . 0 1 9 5 5 0 0 1
0 7 . 2 1 9 2 8 0 9 W 9
0 0
7 , 2 1 9 2 8 0 9 4 9 0
1 1 . 0 1 9 5 5 0 0 1 0
1 3 . 7 9 3 1 9 3 9 0

The APL expression above calculates the deviance
o f child nodes for each possible split f rom A ={ x l } ,
B={x2-xa} to A={xl-xT}, .B={xa}, where A and B
stand for child node subsets after a split The 6zst 4
splits give pure leR node (class 1) and the mix of
classes in the right node. The hst 4 splits perform vice
versa. Only the fifth split (equivalent to split condition

x=4..~ creates two pure child nodes. The reduction in
deviance for each possible split is given by the APL
express/on:

(D e v i a n c e c) - + / d
2 . 2 0 6 8 0 6 0 9 6 g . 9 8 0 L l - ~ 9 9 9 1 8 . 7 8 0 7 1 9 0 5 1 1 6
8 . ' 7 6 0 7 1 9 0 5 1 q - . 9 8 0 u , 4 9 9 9 1 2 . 2 0 6 8 0 6 0 9 6

The max imum value o f 16 is achieved with the
opt imal xS4.5 split

Split selection
In order to find the best split, it is necessary to re-

view all possible splits for each predictor variable at
each node and choose the one that produces the larg-
est improvement in @odne;; of da, rsificatio,. So, as the
best split we choose the one that leads to the minimal
value o f deviance (or equivalently, the largest reduc-
tion in it).

The APL fianction P a r t 1 e l o n returns the best
spl/t o f a given predictor x (right argument) and a
given vector o f c/ass numbers c1 ass (left argument).
The result is an opt/real threshold and a corresponding
value o f deviance for continuous predictors, or a sub-
set o f levels and deviance for categorical predictors.

104

[0] z+class Partitlon x:y;por;p
[1] z~to
[2] por÷Unlque x
[3] :If l=-x
[4] por÷por[~por]
[5] i(l<ppor)/'por~.5*2+/por'
[6] :Else
[7] por÷Subsets pot
[8] :EndIf
[9] :For p :In pot
[I0] y+Devlance(x Compare p)/class
[11] y~y+Deviance(-x Compare p)/class
[12] Z÷Z, 7
[13] :EndFor
[i~] p÷ztLlz
[15] z÷por[p],z[p]

To unify processing off continuous and categorical
predictors we use a simple util/ty funcuon, compare:

[o] l~-x Compare p
[i] :If l=mx
[2] 14-x~p
[3] :Else
[4] 14-xep
[5] : EndIf

The type o f a predictor (left argument) is distin-
guished using its depth and the right argument is either
a threshold or a subset o f values. The following exam-
ples illustrate the use of Par t i t i on:

c~-i 1 1 1 2 2 2 2
X ÷ l 2 3 q 5 6 7 B
c Partltlon x

q-.5 0

S~-, "" ' ABAACDDC '
disp c Partitlon s

I .-~ I
I I i o I
I I I C I I D I I I
I I ' - ' ' - ' i I
I ' e ' I

In the first example the best threshold is equal to
4.5 and in the second one (categorical predictor) the
best subset is {D,C}. Both splits lead to a perfect clas-
sificauon and therefore have deviance equal to 0.

The following function Sp i i t finds the best split
among all predictors and all splits for each predictor.

[0] z+class Split data;x;i
[1] :If l=pUnlque class
[2] z+~po
[3] :Else
[W] z~-=(cclass)Partl tion"c[l]data
[5] i÷z[;2]tLlz[;2]
[6] z ÷ l , z [1 ; 1] ,2pO
[7] : EndIf
[6] l~-+/(Unlque class)°.=class
[9] z4-z,l÷(it [/l)=Unique class
[lO] z~-z,pclass-i

A l e x a n d e r S k o r n o r o k h o v a n d V l a d i r n i r K u t i n s k y

Proceedings of the APL 2001 Conference

I t takes the whole data set (matrix) as the t ight ar-
gurnent and the classification vec tor as the left argu-
ment . I f the current n o d e is a pure one (a check at line
[1]), then the first 4 i tems o f a result are set to 0 to
indicate a terminal node (leaf). Otherwise, we f ind the
best split for each predictor (line [4]) and define which
predictor has to be used to pe r fo rm a split (lines [5-6]).
Finally, we add to the result a cLass label for the cur-
rent node (lines [8-9]) and a rnisdassifieation rate (line
[10]). A class label is assigned to a class with the high-
est probabil i ty (Bayes decision rule) or, equivalently, to
a class mos t ly represented at this node.

Recursive partitioning
N o w we are ready for the job o f growing a class/-

f icadon tree. This construct ion is known as recursfve
partitioning. A recursive funcdon GrowTree performs
this task:

[0] tree~-{i}GrowTree data;el;l;]; left;
rig]~ t ; pot ; sp

[1] a(O=O~C'i')l'i~l'
[2] cl÷data[;2=pdata]
[3] sp~-cl Spllt -¢+[2]data
[g] tree~O 7pO
[5] :If sp[l]=O
[6] tree~-tree.[1]l.sp
[7] :Else
[8] sp[3 ~,]~-o 1+2xI
[9] tree~-tree,[1]1.sp
[i0] Cj por)~-sp[1 2]
[11] left~-(data[;]]Compare por)gdata
[12] rlg]~t~-(-data[;]]Compare por)gdata
[13] tree~-tree.[l](lxl)GrowTree left
[ig] tree~-tree.[l](l+2xi)GrowTree rigfit
[15] :EndIf

The f ight a rgument is a matr ix o f data. An op-
t innal left a rgument is used in recursive calls and gives
a current node a number . I t takes value 1 for a roo t
node (line [1]), when the funct ion is called for the first
time. T h e result is a classification tree represented as a
7-colurrm matrLx. T h e mean ing o f the result columns
w/U be explained a bit later. In line [2] we take a re-
sponse v-o-i-hie (class labels) given in the last co lumn
o f data matriT_ Line [3] finds the best split as it was
discussed above. I f the current node is a terminal one
(check in line [5]) then its data is directly concatenated
to a matrix o f the tree 0ine [6]). Otherwise, the hum-
beers for child nodes are assigned in line [8]. The root
node takes the n u m b e r one. Each subsequent level o f
a binary tree has twice as m a n y possible nodes (2, 4,
16, 32,...), which are enumera ted f rom left to fight. In
line [10] f rom a result o f funct ion Sp I i t we take the
best predictor index j and the threshold value p o t
(or a subset o f values for a categorical predictor). In
lines [11-12] we pe r fo rm an actual split creating data

subsets for the left and right child nodes. A n d finally,
the funct ion is called recursively for each subset o f
split data 0ines [13-14]).

Le t us n o w build a tree-based mode l for the artifi-
cial data set described above.

pt÷GrowTree data
5 7

---t
3

dlsp ¥t

+1 1 5 . g 5 2 3 1 10[
12 0 0 0 0 1 01
13 3 D C 6 7 2 5 l
16 o o o o 3 o l
17 0 0 0 0 2 ol
I . !

Each row o f the result corresponds to a node. We
const ructed a tree o f 5 nodes. The depth of the result
is 3 because it cont,,ins nes ted vectors o f categorical
predictor subsets. I f only cont inuous predictors axe
used, then the result is a simple numer ic matrix. T o
display the ou tpu t we call a utility function, d i s p , to
fo rmat the mar,4T o f the result ing tree.

Le t us discuss the structure o f z result in more
detail. The first three co lumns are the n u m b e r o f node,
the n u m b e r o f a predic tor to be used for the split and
a threshold value (or levels subset) to apply to that
predictor. A zero value for a predic tor index (and for a
tkreshold) indicates a terminal node. Fo r instance, in
the roo t (row 1) we should split data on predictor X l
and use threshold value 5.45. Columns 4 and 5 g/ve us
the numbers o f the child nodes. A t node 3 (row 3) we
pe r fo rm split on condi t ion X~ 6{D,C} and the child
nodes are 6 and 7 (rows 4 and 5), which are bo th
terminal nodes. T h e last two columns (6 and 7) are the
class label and the n u m b e r o f classification errors for
each node. N o w we can draw the tree. T h e result is
shown in Figuze 1.

Using the Tree
The main use o f a tree-based mode l is predicuon

or classification o f n e w data points. A P L funct ion
P r r e d i c t per forms this task:

[0] z~data Predict tree;por;l;];k
[1] x(l=ppdata)/'data÷.[.S]data,
[2] z ~ t O
[3] :For k :In t+pdata
[4] 1~1
[5] :While -tree[i;2]=o
[6] (] por)~tree[l;2 3]
[7] :If l=.data[;]]
[8]]~data[k;]]>por
[9] :Else

C l a s s i f i c a t i o n T r e e s i n APL 105

P r o c e e d i n g s o f t h e APL 2001 C o n f e r e n c e

[i0]]÷-data[kill,pot
[11] :EndIf
[12] l+tree[l;4+]]
[13] i~tree[;l]tl
[14] :EndWhlle
[15] z~z.tree[i:6]
[16] :EndFor

The zight argument is a tree object built using the
function GrowTree. The function starts from a too t
o f the tree and selects a branch (child node) in lines [8]
(continuous predictor) or in line [10] (categorical
predictor). Then, it goes to a proper child node Oines
[12-13]) and repeats the process. I t stops when a
terminal node is reached (line [5]) and, finally, the class
label o f this node is assigned to a result in line [15].
The following examples illustrate the use o f P r e d l e t:

5.I 0.5 (. 'A') 3 Predlct t
1

5.50.5 (.'D') 0.5 Predict t
3

data[;5]
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

data Predict t
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

data[;5]^.=data Predict t
1

Another task o f interest ~ the esfirnaUon o f a mis-
classification rate for a given tre~based modal. The
foRowing simple function performs this ~sk:

[0] n÷HErrors tree
[1] tree+(tree[;2]=O)~tree
[2] n~+/tree[;7]

NErrors t

We may he interested in extracting a rule or a set
o f rules ffrom a tree-based modeL For a g/yen terminal
node we have art associated class label and a set o f
conditions to reach this node from the root o f a tree.
This may be expressed as a rule:

C/a££ C IF Conditio, 1 . A N D . . . A N D Condition N

Functions G e t R u l e and G e t I F allow us to ex-
tzact rules:

[0] r~t GetRule n
[1] r~#t GetIF n
[2] ((pr)=r)~-3~(pr)=r
[3] re'Class ',(vt[t[;1]tn;6]),' IF ',r

[0] r~t GetIF n;l;x;v;o
C1] r~''
[2] l ~ (= [z] t [; ~ s]) , " n
[3] ~(l=t[t[;l]tn;1])/O
[g] (x v)÷t[[/i;2 3]
[5] o~(I+2==V)='~>' '=~'
[El X~('V',TX),O[i+>/i],TV
[7] r~r,=x,' AMD'
Is] r~r,t GetlF t i t / l ; 1]

The left argument o f the function G e t R u l e is a
tree object and the right argument is a number o f a
terminal node associated with the rule to he extracted.
An illustration is shown below:

t GetRule 6
Class 3 IF ~'1>5.~5 AND F3= D C

t GetRule 7
Class 2 IF T/1>5.g5 AND V3~ D C

In order to document a classification tree model, it
is useful to format a matrix o f a tree. A P L function
Print does this job:

[0] f~-Prlnt t;l
[I] l~-[2el+t[;I]
[2] f4-v"t [; I]
[3] t[;Ilk-f,"') '
[L~] f~-wt,' *'[1+t[;2]=0]
[5] f~-(-2xl)~((2=pf)+2x[/l)+[2]f

Our format is similar to the style used in S-PLUS
and R. This means that we show a depth o f each node
and mark tern'final nodes with asterisks:

P r i n t t
1) 1 5.q.5 2 3 1 1 0

2) 0 0 0 0 1 0 *
3) 3 D C 6 7 2 5

6) 0 0 0 0 3 0 *
7) 0 0 0 0 2 0 *

Cost-Corn plexity Analysis
Overfitting

As it is well known, real data are always "noisy"
and the ~str ibu~ons for the classes ovexlap. While we
gzow a tree using a training set we may adapt a model
too we1.[to the particular training set we have. But this
model may work badly when we use it for prediction
on new data points. This problem is known as ovrrfit-
~/ng. Let us illustrate this problem using our artificial
data set. I t has four predictors, but two of them (X2
and Xg) axe usdess (they were generated at zandom).
The only two predictors Xf and Xj perform perfect
classification in accordance with the tree built above.
It may he expressed 'with a set o f 3 simple zules:

Cla, r,= 7 IF (X~.~ .4~

Clas~=2 IF (X ,>5 .45)AND (X je {A,B })

C/gr;=9 IF (X,>5.4~ AND (X, ¢{D,C})

Let us now bring in errors or noise to our dam set:

data2÷data
data2 [1 ; 1]~-6, i
data2[15;3]~-c, 'A'

The first data point belongs to cclass 1. After we
changed the value o f predictor Xf to 6.1 the first rule

106 A l e x a n d e r S k o m o r o k h o v a n d V l a d i m i r K u t i n s k y

Proceedings of the APL 2001 Conference

does no t w o r k and this p o i n t will be misdassif ied. F o r
point 15 (Class 3) we changed X , value from g)' to
54: Rule 3 does n o t w o r k n o w and this point will be
misclassified to class 2. T h e fol lowing calculation
shows predic t ion us ing the "o ld" tree, bu t the n e w
data set indicates tha t two errors were created:

d a t a 2 [; 5]
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

data2 Predict t
2 1 1 1 1 2 2 2 2 2 3 3 3 3 2

data2[;5]~data2 Predict t
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Le t us n o w build the n e w tree using the new data:

t2÷GrowTree data2
NErrors t 2

Print t 2
1) z

2) 0
3) 3

S) 0
7) 1

1 ~) 0
15) 2

30)

60)
61)

31)

5. %5 2 3 1 i0
0 0 0 1 0 *

D C 6 7 2 6
0 0 0 3 0 *
5.55 1% 15 2 2

0 0 0 3 0 *

2 30 31 2 1

1 6,g5 6O 61 1 1
0 0 0 0 1 0 *
0 0 0 0 2 0 *

0 0 0 0 2 0 *

W e m a y see that the n u m b e r o f errors is equal to 0
again, bu t at the cos t o f a doub ly complex tree (6 ter-
rninal nodes in compar i son to 3 terminal nodes o f an
"o l d" tree). E v e n m o r e i m p o r t a n t is the fact that the
/ . t rdevant noisy p red ic to r Xz is n o w invo lved in the
classification (node 15). L e t us n o w examine an en-
t i rdy n e w data point , which fits to rule 2) and there-
fore has to be pred ic ted as a dass 2 instance:

6.% 1.5 (,'A') 3.62 Predict t
2

6.% 1.5 (.'A') 3.E2 Predict t2
1

6.g 2.5 (,'A') 3.62 Predict t2
2

T h a t is t rue i f we use the initial tree m o d e / t. Bu t
this po in t is misclassified with the n e w m o d e l t 2, be-
cause the noisy p red ic to r X2 has a value o f 1.5 and the
i r r d e v a n t rule at n o d e 15 is fired. As p red ic to r X2 is a
noisy one it m a y take any value. T h e third express ion
o f the example above shows that the classification is
changed i f X2=2.5. I t really looks like a r a n d o m game
and we have to conc lude that the t ree moda l t 2 is
overfi t ted.

Cutting the tree
At this stage, a ques t ion arises, " H o w do we cope

wi th the p r o b l e m o f overf i t t ing?" O n e way is to stop a
tree growing be fo re ir reaches its maximal size. T h e

usual s t o p criteria are a smal l n u m b e r off po in t s at
so m e n o d e o r a small r educ t ion in dev iance . .Ano the r
ap p ro ach is to r e m o v e unnecessary" nodes affter a t ree
o f maximal size has b een built. W e m a y limit the n u m -
ber o f rules pe r cclass o r the n u m b e r o f predic tors used
for classification. S o m e insights o f that kind may c o m e
f r o m prev ious research, diagnost ic i n fo rma t ion f r o m
other analyses, or even intuit ion.

In the nex t sect ion we cons ider using spec/al for-
mal p rocedures fo r select ing the " 'fight-sized" tree,
k n o w n as co;t-compkxi~ypruning and cross-validation. H e r e
we discuss a m e t h o d and a func t ion to reduce a tree
size to a given numbex o f nodes .

T h e raw resul t o f the G r o v T r e e funct ion is a
maximal chss i f ica t ion tree. N o w we wan t to get a
smaller subt ree wi th fewer nodes f r o m the maximal
tree. T h e p r o b l e m is that there can be m a n y di f ferent
trees o f the same size. T h e s e trees o f the same size
m ay differ in the p r o p o r t i o n o f misdass i f ied cases.
T h e goal is to select the best subtree o f a given size.

T h e func t ion C u t takes the tree o f maximal size
as its r ight a rgumen t and searches fo r the tree o f size n
(left a rgument) such tha t its cost (misdassif icat ion
rate) is the lowes t a m o n g aU trees o f the same size.

[o] z~-n C u t t r e e ; c n t ; m e m o ; t m p ; i ;] ; k
; r o w ; e

[1] n~nL+/tree[;2]=o
[2] :If n=l
[3] z~tree[.1;]
[%] z[l;2 3 g 5]~0
[5] :Return
[6] :EndIf
[7] z÷O 7po
[8] c n t ÷ O • memo÷O 3po • k ~ l
[9] : W h i l e c n t s n
[10] z÷z, E1]tree[k;]
[11] :For i :In tree[k;% 5]
[12] J~tree[;l]Li
[13] row~tree[];]
[1%] :If row[2]=o
[15] z÷z,[1]row
[16] cnt~cnt+l
[17] :Else
[18] e÷tree[;1]trow[~ 5]
[19] e÷ruw[7]-+/tree[e;7]
[20] memo~memo,[1]i e]
[21] :EndIf
[22] :EndFor
[23] :If n=cnt+÷pmemo
[2%] tmp~tree[memo[;3];]
[25] imp[;2 3 % 5]~0
[26] z~z.[1]tmp
[27] :Return
[28] :EndIf
[2S] memo~memo[~memo[;2];]
[3 0] k~l=memo[;3]
[31] memo~l¢[1]memo
[3 2] :EndWhlle

Classification Trees in APL 107

P r o c e e d i n g s o f t h e A P L 2 0 0 1 C o n f e r e n c e

The algorithm for selecting a smallex size tree with
minimal costs is the following', having at a certain stage
a tree of size ,, we choose which of (/:tO nodes (sup-
pose they are not te.rmJ.ual nodes yet) to split next in
order to get a tree o f size (tl+l). The choice is in favor
o f that node that, after having been split, gives the
maximum decrease in deviance. Starting from the root
node (size = 1), the function examines all candidate
nodes grown fill the moment . I f they are not terminal
nodes (fine [15]) it calculates the decrease in deviance
for each o f them (fine [20]) and stores the results in a
temporary variable memo (line [21]). When all nodes
are examined, the function ranks the order o f the
matrix memo and picks the node with the maximum
value o f decrease in deviance (line [32]). The process
continues till the desired tree size n (left argument) is
reached (line [24]). Here, cn t equals to the number o f
terminal nodes obtained to this momen t and ÷ pmemo
equals to the number o f candidate nodes. Once no
further split is needed, the nodes in memo are re-
garded as terminal ones 0ine [26]) and the process
ends. The result o f the function is the tree o f size n
with the lowest cost.

Print 3 Cut t2
1) 1 5.q.5 2 3 1 i0

2) 0 0 0 0 1 0 *
3) 3 D C 672 6

6) 0 0 0 0 3 0 *
7) 0 0 0 0 2 2 *

,An example shown above demonstrates that the
reduced tree t2 fits exactly to a tree t, built on
" c lean" data before errors were insetted. But we have
now two mischssified points at node 7. This is
unavoidable, because the noisy data does not fit the
ideal rules.

Pruning the t r e e
In the previous section we learned how to find

trees smaller than the maximal tree size. N o w we have
to srdp of f the least important splits on a regular basis.
T h i s process is called aoxt-c0tnp/e~c/~,p~nin&

Let us denote the cost o f the subttee T" as C(T').
We will estimate a cost as the total misclassification
rate of a tree. The size of a tree is equal to the number

of terminal nodes and is deno ted as .r/~e(T~. Then the
cost-complexity measure is given by:

C k (T ') = C (T ') + k x s i ze (T ') ,

where k is the complexity parameter.

Let us assign the initial value to k as zero. N o w for
every tree (inducUng the first, cont , ining only the root
node), compute the value of the filnetJon above. In-
crease the complexity parameter continuously until the

value o f the function for the largest tree exceeds the
value o f the function for a smaller-sized tree. Take the
smaller-sized tree to be the new largest tree and con-
dnue increasLng the complexity parameter. Stop the
process when the root node becomes the largest tree.

Thus, we get a sequence of largest trees. The se-
quence has a number of interesting properties. It is
nested, i.e. every tree contains all the nodes of the
next smaller tree in the sequence. I.uitiaUy, many nodes
are pruned going from one tree to the next smaller
trec in the sequence, but fewer nodes tend to be

pruned as the root node is approached. Second, for
every tree in the sequence, there is no other tree of the
same size with lower cost. And finally, this is the very
sequence of trees out o f which we will choose the
"t ight" tree size at the stage o f cross validation.

To perform the task o f pruning a classification
tree we have a function P r u n e which takes a tree to
prune as its right argument. The left optional argument
s t stands for "'step" and indicates the value o f in-
crease o f the complexity parameter k, line [15].

[o]z÷{~t}Prune tree;prlme;min;max;k;sizea
[i] ,(O=DNC'st')/'st~-0.1'
[2] max4-+/tree[;2]=o
[3] sizes~-tmax
[q.] prime~-slzes Cut"ctree
[5] prlme÷(NErrors"prime). [i. 5]sizes
[6] .k , -o
[7] z~-~O,-l÷[1]prlme
[8] :WfiIJe max,1
[9] min~-prlme [; 1] + k x s l z e s
[i0] min~-mlnt [/min
[11] :If mln<max
[12] max~-mln
[13] z~-z,[l]max,prlme[max;l],k
fig] :EndIf
[15] k~-k+st
[16] :EndWhlle

In the line [4] we call the function Cut to search
for trees with minimal costs for all tree sizes. This tree
sequence is used later 0rues [6-16]) to produce the
final sequence of the cost-complexity optimal trees.
The resuh is the 3-columns mat r i x . The first column
contains tree sizes. The second column contains the
corresponding costs and the third column contains the
corresponding values o f complexity parameter I¢:

Prune t2
6 0 0
4 1 0 . 5
3 2 1
1 10 q.

1 0 8 A l e x a n d e r S k o m o r o k h o v a n d V lad im i r K u t i n s k y

Proceed ings o f t he APL 2001 C o n f e r e n c e

C r o s s - v a l i d a U o n a n d c h o o s i n g t h e f i n a l
t r e e

Cross-validation is a general statistical approach to
select a model o f optimal complexity. The main idea is
to separate datasets used for model learning and test-
ing. The quality o f fitting on a training set increases
with the increase in model complexity. That is not true
for independent data of a testing set. Usually, the error
rate o f prediction reaches a small value at some "rea-
sonable" complexity level and then decreases very
slowly or even increases. Thus, we may select the sim-
plest model with an acceptable error rate.

The cost-complexity prmdng considered in the
previous section g/yes us the Iaght sequence o f txees,
ordered by complexity. We may now calculate the
tmisdassificat/on rate for each tree of this sequence on
an independent dataset and select the optimal one.

In the present work we will use so-called V ~ / d
Cro.r.r-vah'datttb,. This type of cross-validation is useful
when no separate test sample is available and the
learning sample is too small to have the test sample
taken from it. A specified parameter, V, detcrrnines
the number of random subsarnplcs, as equal in size as
possible, that are formed from the learning sample.
The classification tree of the specified size is com-
puted V times, each tJ.mc leaving out one of the sub-
samples from the computations. This subsample is
used as a test sample for cross-validation. So that each
subsample is used (V- I) times in the learning sample
and just once in the test sample. The misdassification
rates computed for each of the V test samples are
then averaged and used for art optimal tree selection.

We use a function, Samples, to generate ran-
dom subsamples, which we need to perform the cross-
validation procedure. I t returns n (left argument) ran-
dora subsamples o f about the same size as its result.
The right argument s i z e indicates the size of the
main sample.

[o] z~-n Samples size;p;r
[1] z~-size ?size
[2] p4-Lsize+n
[S] r÷si ze -n *p
[4] p÷(npp)+n¢rpl
[5] p4-epp tn
[6] z÷p=z

Here is an example o f its work:
dlsp 2 Samples 10

,-~ . .

I .~+ I
I 17 s l o s 11 16 2 q- S 3 l I
I . I
I i i ~ . I

The next function C r o s s V a l i d a t e performs V-
fold Cross-validation. Its left argument n is the V
parameter and the right argument is the tree object.

[0] z~-n CrossValidate tree;data;e;ee
;m ; rnd ;s ; sz; t ; test ; train

[1] (tree data)q-tree
[2] sz~,l÷[2]Prune tree
[3] rnd÷n Samples+pdata
[~] z4-0 3 p O
[5] :For n :In sz
[5] e ~ - t o
[7] :For m :In rnd
[8] test÷data[m;]
[9] train÷data[ernd-=m;]
[10] t÷GrowTree train
[11] t÷n Cut t
[12] ee~-+/test[j2=ptest]~test Predict t
[13] e÷e,ee÷+ptest
[1W] :EndFor
[15] m~-+/e+oe
[16] s~-+/(e-m)*2
[17] s~-(s+-l+pe)*o. 5
[16] z~-z.[1]n,m,s
[19] :EndFor

First, the function prunes the tree (line [2]). Then,
for every tree in the obtained sequence (line [5]), the
function grows a chssification tree n times (line [7]).
Every time a new training set is used (line [10]). Pre-
dict/on accuracy is estimated on a new test set (line
[12]). In lines [15-17], a mean value and a standard
deviation o f eetxors are calculated and passed to the
result (line [18]). The final result is the matrix whose
columns contain tree sizes, corresponding cross-
validation costs and standard e.a:ors accordingly.

Let us apply function CrossValidate to a
tree created with use o f noisy data:

3 CrossValidate t2 data2
1 O.S 0
3 0 . 6 0 . 2
q. 0 . 6 6 6 6 6 6 6 6 6 7 0 . 3 0 5 5 0 5 0 q . 6 3
6 0 . 7 3 3 3 3 3 3 3 3 3 0 . 2 3 0 9 ~ 0 1 0 7 7

Results are shown in Fig.2, where we see the min-
imum misdassification rate for an optimal size-3 tree.

C r o s s - v a l i d a t i o n

, . 0 . 9

0 .8

i °-,

D. 0 . 5

1 3 4 6

T r e e s i z e

Figure 2: Cross validxtion results for artifici~ data

Classi f icat ion Trees in APL 109

Proceedings of the APL 2001 Conference

Thus, the automatic selection o f an optimal size o f
a tree allows us to avoid the loss in the predictive ac-
curacy produced by an effect o f "overfitting".

Diagnostic Data Mining
As a Data Mining too l tree-based modeling is in-

creasingly used for surnmariT.ing large multivariate data
sets. In this paper we demonstrate possibilities o f this
technique in application to monitoring the vibration o f
mechanical equipment in Nuclear Power Plants
(NPP). The basic information unit o f vibration is the
spectrum of a signal measured by v/brarion sensors
placed on mechanical equ/pment. Changes in vibration
behavior and characteristics o f a spectrum indicate
mechanical changes in the moni tored equipment. The
data used in the paper were measured at a Nuclear
Power Plant m Novovoronehz , Russia. We discussed
the application m these data o f Pattern Recognition
techniques in the papers [6, 7].

Problem description
A typical N P P vibration monitoring system uses

many sensors, performs measurements on a regular
basis, and calculates high-resolution spectra. In our
system there are 32 vibration sensors and each spec-
trum is estimated for 400 frequencies in the range 0-
50Hz. The database size is growing rapidly and there
is the need for an exploratory technique for uncover-
ing structure in the data.

The system sensors and measured spectra differ in
many aspects:

• Sensor type and measured signal may be pressure,
absolute or relative displacement

• Sensor location, like steam generator or main
coolant pump, and different coolant loops

• Measurement direction, as across or along a pipe-
line

• Displacement direction, as vertical movement o f a
reactor or steam generator movement to and from
a r e a c t o r

.All the above factors and any combination o f
them may be used for data categorization, such as

• Spectra o f steam generator or coolant pump
vibrations

• Spectra o f steam generator vibrations for different
coolant loops

• Spectra of absolute and relative displacements

The main dassificarion o f interest is ff a spectrum
from a particular sensor belongs to a normal or ab-
normal class o f vibrations. But discovering the com-
m o n features and differences for other categories, as
we menrioned above, may give very important infor-
marion about the system.

We successfully applied tree-based technique to a
concise description o f any reasonable category of data
and Large database summarization. Interesting patterns
have been uncovered and used for malfunction diag-
nosrics. In th/s paper we briefly consider only two
examples o f this research:

1. Classificarion o f vibration spectra o f steam gen-
erators or coolant pumps

2. Classification o f vibration spectra o f steam gen-
erators of different coolant loops

For graphic representation o f data, we used our
implementation o f AP207 emulator for Dyalog APL
[5]. In this paper we also described the syntax o f asso-
da ted utilities.

SG-MP Classification
In this example we are interested in the differ-

ences between spectra o f a Steam Generator (SG) and
the Main Coolant Pump (MP) vibrations. A set o f
1098 spectra o f both classes were divided into a train-
ing and testing sets:

p s
1 0 9 8 tl.OO

pc.Z
1 0 9 B

Un ique c1
1 2

ptrain
5 0 0 4 0 1

ptesC
5 9 8 4.01.

The tree-based model was built using only data o f
the t ~ . i n g set:

t÷GrowTree train
NErrorm t

o

The resuhing tree is shown in Fig.3. This model
allows the right classification, but looks too compli-
cated (11 terminal nodes). Using the function C u t we
crested a sequence o f roo ted subtrees of sizes from 1
to 8. Then we calculated the misclassifcarion rate
using each subtree for prediction on independent test
data.

p ~ (c t e s t [; t ~ o o]) Predict"(ta)Cut"ct
(,s),[.5]+/"(ctest[;goz])-p

1 2 3 q- 5 6 7 S
2 8 2 8s 39 38 36 36 2 3 2 2

110 Alexander Skomorokhov and Vladimir Kut insky

Proceedings of the APL 2001 Conference

v=== • I .==d=,

v,, • , L,=I,=I

ga

L IB

LI LI

vT= ,, fmaa=,, v=4 ~ =la*=a=1

........... II

LI L|

Figure 3: Full Tree for SG-MP Classification

This model gives correct classification, but looks
too complicated (11 leaf nodes). Using the function
CCu t we created a sequence o f subtrees o f sizes 1 to 8.
Then we calculated the misclassification rate using
each subttee for prediction on independent test data.

p~-(ctest[; t q - O O]) P r e d i c t " (t s) C u t " = t
(t S) , [.5]+/"(=testE;~o1])~p

1 2 3, ~ 5 6 7 8
2 8 2 88 3,9 3,8 36 36 23 22

This result allowed us to select an optima/ tree
with only 3 terminal nodes:

t 3 ~ - 3 tr. Cut t
Print t 3

1) 1 9 6 0 , 0 ~ 8 1 6 2 6 3 q . 5 2 2 3 1 2 4 2
2) 6 9 0 . 0 6 9 1 2 2 9 4 - 2 8 4 q. 5 1 SO
3) 0 0 0 0 2 ~ *

4) 0 0 0 0 1 1 6 *
5) 0 0 0 0 2 0 *
lOOu(+/cl~s Predict t3')+pcl

5 . 3 ' 7 7 3 4 0 6 1 9 3

As it is shown above, the prediction error o f an
opt ima/ t ree is about 5.4%. It is more than acceptable
for our g o a / o f dataset summarization. And ordy 2 o f
400 predictors (spectrum values at frequendes 69 and
196) have been used for classification. The foUowing
simple tulles describe the main structure in data:

=(¢t3,) G e t R u l e " 3 , 4 5
C l a s s 2 I F V l S S > 0 . 0 q . S
C l a s ~ I IF V z s s s o . o ~ s AND Y69sO.069
Class 2 IF I , " 1 9 6 s o . o ~ . s AND V 6 9 > 0 . 0 6 9

Let us consider median spectra o f each c/ass for
the above ru/es interpretation:

med÷{o.s~+/~,[(,t~)[fo.5~,o 1 + p s i] }
m l ÷ m e d " c [13 (c l =1)~sl
m2~-med"=[1] (cl=2)~sl

plot (t400) ml m2
0.I~

0..I

SEe

O~

B~

Figure 4: Median spectra for classes SG and MP

T w o vextical lines in the Fig.4 indicate ffrequenc/es
used in the classificat/on tree. It may be seen, f o r / n -
stance, that c/ass MP has a higher l evd for a large peak
at frequency 196. This is the main frequency of a
pump wheel rotat/on. A sensor located on the coolant
pump detects the associated vibration more easily.

Different coolant loops classification
Let us n o w find rules to distinguish spectra from

sensors located at the diffezent coolant loops. There
are 6 coolant loops at the reactor we work with. In
general, there should not be any difference between
vibration o f the mechanical equipment o f the same
type, but located at different coolant loops. Therefore,
we expect a large tree with only a few objects at each
tecmina/node. Let us check if that is the case. We used
for constructing the tree a dataset o f 574 spectra from
6 classes:

p~
5774 40o

p c l
5 7 4

Unique cJ
i 2 3 4 5 6

+ / (~ s) - . = c l
1 1 7 1077 66 9 3 ¢ 2 5 66

The resulting tree is a complicated one:

t ~ - G r o w T r e e s , cJ
Print t

I) 71 0 . 0 6 3 2 6 2 3 , 2 2 5 1 2 3 5 q-49
2) 3,99 0 . 0 q . 0 4 6 2 9 9 4 1 6 4 5 1 2q-7

LI-) 3,5 0 . 0 6 9 1 3 , 5 8 9 2 76
8) 6 0 0 . 0 5 3 0 5 3 1 9 4 1 1 6 1 7 3 1 0

1 6) 0 0 0 0 3, 0 *

17) g 0 . 0 5 2 9 4 1 0 6 6 3tl. 3 5 ~
3q.) 0 0 0 0 q- 0 *
3 5) 1 0 . 0 8 7 q - q - 9 % 6 5 7 0 771 6 2

7 0) 0 0 0 0 6 0 *
71) 1 0.i01~2617 142 143 1 1

1 4 2) 0 0 0 O 5 O *

Class/fication Trees in APL 111

P r o c e e d i n g s o f t h e APL 2 0 0 1 C o n f e r e n c e

l q - 3) 0 0 0 0 1 0 *
9) 0 0 0 0 2 0 *

5) 91 O.06q-62t l . 391q-9 10 11 1 65
1 0) 10 0 . 0 7 9 6 3 5 2 9 8 5 7 20 21 6 1

2 0) 0 0 0 0 5 0 *
2 1) 0 0 0 0 6 0 *

1 1) 0 0 0 0 1 0 *
3) 8q- 0 . 0 5 7 5 2 8 1 0 1 q . 6 7 5 87

6) 0 0 0 0 it 0 *
7) 0 o 0 0 5 o *

We used the whole dataset for leam/ng. Let us ap-
p ly the cross validation p~ocedute to define the right
size o f a tree:

+ e v e 5 C r o s s V a l i d a t e t (s , c l)
i 0 . 8 0 1 3 9 2 ~ 0 6 7 0 . 0 3 7 9 7 8 5 1 8 9 3
2 0 . 8 0 6 3 ~ 6 3 0 0 5 0 . 0 8 0 1 2 7 3 6 4 6 7
3 0 . ~ 0 5 9 3 ~ 0 1 2 0 . 0 5 1 7 ~ 9 3 2 3 9 6
g 0 . 2 5 9 8 7 2 8 ~ 5 2 0 . 0 1 ~ 0 5 1 4 5 3
5 0 . 1 8 2 0 5 9 ~ 9 6 6 0 . 0 2 9 6 3 7 7 7 5 6 2
6 0 . 0 3 ; 8 5 6 8 8 8 3 5 0 . 0 1 7 ~ 3 9 7 ; 6 7 9
7 0 . 0 2 6 1 3 2 7 2 3 1 1 0 . 0 1 5 0 6 1 6 5 9 0 ~
8 0.02091533181 0 . 0 1 ~ 5 7 1 ~ 6 7 1 6

11 0 . 0 1 7 4 3 7 0 7 0 9 g 0 . 0 1 7 9 2 0 1 6 5 5 6
0 I plot 1 2/c[l]cv[;l 2]

.*

\

~ - - ' - - ~ - " ' I I
° ~ ,~] .~ J, ,L

F igu re S. Cross validation results

We see that the misclassification rate almost stops
decreasing after tree size reaches 6. The tree of that
reduced size is shown in Figure 6 (a plot was created
in the R statistical system):

V 7 1 < O.,OO321J23

V31111B K O.g14041S3

VSB < O.L, .1 SB7 VBI < 0 .L8 4 . 244

[I I I
L~ L2 LI! L I

L4 LB

F i g u r e 6: Reduced tree structure

This tree is unexpectedly simple and accurate. Er-
ror rate is only about 2%.

t 6 ÷ 6 C u t t
l O O ~ (J V E r r o r s t 6) ÷ ÷ p E

1 . 9 1 6 3 7 8 3 0 7

O t h e r news is even m o t e imports.hr. The fit:st spl i t
divides all. data into two groups o f coolant loops
{1,2,3,6} at the left branch and {4,5} at the right one.

Let us have a look at median spectra of these two
groups to interpret the observed dassificat/on:

ml~-med"c[1](cl(1 2 3 6)~s
m2~-med"=[1](cJe4 5)~s
p l o t (t ~ , O 0) ml m2

u|

QJm

n~

uJ~

" ¢ ,,t,, ,1. ~ J,, =J. J. 2.,

Figu re 7: Median spectra for two groups of coot-
ant loops

The vertical line in Figure 7 indicates the root split
~equency. I t may be seen that spectra at loops 4 and 5
have a peak at frequency 71 and the other loops have s
spectrum dip at the same frequency. To see how
significant this difference is, let us use a Box-Whisker
plot for two subsets o f the predictor 71 values:

x14-(clel 2 3 6)~s[;71]
x2~-(cl(g 5)~s[;71]
bw_plot xl x2

Om

OIB,g

.', ! ,L, -i ,', :l

F i g u r e 8: B o x - W h i s k e r p l o t fo r two groups o f
coolant loops

The difference is h/ghly significant and therefore
we may conclude that the important distinctive feature

112 Alexander Skomorokhov and Vladimir Kutinsky

Proceedings of the APL 2001 Conference

of the vibration characteristics o f coolant loops 4 and
5 has been uncovered.

Conclusion
A popular Data Mining technique known as Clas-

sification Trees has been considered in detail. ALl ma-
jor parts o f the technique starting from split selection
and growing the tree and finishing with tree structure
optimization were discussed and illustrated by numeric
examples in APL.

It has been shown that Dyalog APL allows effec-
tive implementation o f the software to build tree-
based models and m use them for prediction. Use o f
control structures has simplified the code and hn-
proved readability significantly. The functions P c i n t
and G e t R u l e may be mentioned as a good
illustration of APL's power in array processing. The
use of dyn~mic functions has been seen as veery
convenient for explomto~ calculations in the APL
session.

A case study of summ~riT.ing o f large datasets and
uncovering hidden patterns in the area o f Nuclear
Power Plant vibration monitoring has been discussed
and illustrated by" real life examples.

As future work directions, we would like to
mention:

• Implementation in APL o f Regression Trees
technique

• Development o f utilities for graphical representa-
tion o f tree-based models

• Modifying existing software to allow direct build-
ing o f a tree with data stored in a rehfional
database.

References
[1] W.Y. LOH AND Y.S. SH~I, "Split Selection Methods

for Classification Trees", £ta~sdco £ixiea, 1997, Vol. 7,
pp.815-840

The R Project f o r Statistical Computing. www.r-
Dtoiect.or~

[3] B.D. RIPLEY, Pattern Recognition and Neural
Networks. University Press, Cambridge, 2000.

[4] A.O. SKOMOROKHOV, "A Knowledge Discovery
Method - ALL Implementation and Application".
APL 2000 Conference Proceedings, Berlin, Germany,
APL Quote Quad Vol. 30, Num. 4W.N.

[5] A.O. SKOMOROKtIOV AND A.N. KORNILOVSKY,
"Emulation of IBM APL2 auxiliary processor AP207 in
Dyalog APL", Vufor, Vo1.14, No.l, p.64

[6] A.O. SKOMOROKHOV AND M.T. SLEPOV,
'~Informaton Authenticity Control in Vibto-
Diagnostics System of the Novovozonezh NPP".
Cor~municatio~ of Highrr SchooLr: Nuckar Power
Eugineeriu A. - Obninsk, 1999.

[7] A.O. SKOMOROKHOV AND M.T. SLEPOV, "Pattern
Recognition in APL with Application to Reactor
Diagnostics", A P L ~98 Co~fimnca lOrvc~dtugs: A P L Quote

Vol. 28, Num. 4, Rome, Italy, July 1998.

[8] VI~,IABI.,ES AND B.D. RIPLBY, Modern Applied
SttDtics with S-PLUS, Springer, 1999

[9] N.G. ZAGORUIKO, .eqpph~d Mst~dr of Data and
IOtowkdAa Aua~.ris, Novodbksk, published by Institute
of Mathematics, 1999.

Classification Trees in APL 113

