Proceedings of the APL 2001 Conference

Classification Trees in APL:
Implementation and Application
Alexander Skomorokhov and Viadimir Kutinsky
Institute of Nuclear Power Engineering
P.O. Box 5061, Obninsk-5
Kaluga Region, 249020, Russia
askom@obninsk.com, kutinskyv@obninsk.com

Abstract

This paper considers the problem of classification
tree based data analysis. Among the topics discussed in
the paper are: growing a classification tree using
CART style exhaustive search for splits, selecting the
tight size for the tree using minimal cost-complexity
cross-validation pruning, and examples of the applica-
tion of classification trees.

The algotithms are implemented in Dyalog APL.

Application example is based on data from vibra-
tion monitoring equipment installed on a Nuclear
Power Plant in Novovoronehz, Russia and includes
classification of vibration spectra of steam generators
ot coolant pumps and classification of vibration spec-
tra of steam generators of different coolant loops.

Keywords: Data Mining, Classification Trees,
Pruning, Cross-validation, Vibration Monitoring.

Introduction

Tree-based models provide a numbet of benefits:

® A natural approach to join ptocessing of both
categorical and continuous variables;

® Important information is revealed as the decision
rules are constructed;

e Easy intetpretation of the tesults;
® Large datasets (both the number of cases and the
number of predictots) can be dealt with.

What is a Classification Tree? A Classification Tree is
a hierarchical set of classification rules, which, in case
of numeric predictots only, ate of the form:

Permission to make digital or hard copies of all or part of this work
for personal or classnoom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
APLO1, 06/01, New Haven, CT USA

©2001 ACM 1-58113-419-3/ 01/0006 $5.00

Classification Trees in APL

if x, <b, and x, >b,
then y is most likely to be c,

where b; are some thresholds.

Classification Trees can work with both numeric
and factor prediction varables. In this case the classi-
fication rules ate of the form:

if x, <b, and x, € {S,D}
then y is most likely to be c,

Another feature of Classification Ttees is their hi-
erarchical nature, i.e., the ability of classification trees
to examine the effects of predictor variables one at a
time, rather than just all at once, as it is in case of dis-
criminant analysis.

Classification Trees are displayed gtaphically, malk-
ing their interpretation much easier than a stictly nu-
merical presentation.

In sum, Classification Ttees ate very attractive be-
cause they provide a simple and clear methodology for
data analysis.

Growing the Tree

Input data
Let us considet a number of objects
A={a.a,,....ay}, described by attributes

{xl,xz,..., xm,y}. The x, are called classification or
predictor variables and Y is a tesponse variable. Pre-
dictors can be both numeric and factor variables. Let
us considet also a number of classes
C= {c,,cz,...,ck }. Response variable y indicates the
class of each objectin A.

For illustration purposes we will use an artificial
data set tepresented in Table 1.

101

Proceedings of the APL 2001 Conference

Table 1. Example data set

N | X7 | X2 | X3 X41Y
1 51 105 | A 3 1
2 51145 | B 3 1
3 44 | 4 C 3 1
4 54)35 | C 45 |1
5 5 35 | D 4 1
6 7715 A 15 2
7 61]351]8B 35 |2
8 68 |05 | B 25 1|2
9 56 | 4 B 35 | 2
10 [67 |5 A 1.5 | 2
11 | 64 11 D 0513
12 1 6 45 | C 25 |3
13 1 67 | 2 C 3 3
14 |55 [45 | D 5 3
15 |55]05 | D 05 {3

There are a total of 15 objects (Table 1 rows), de-
sctibed with 4 attributes. Each object belongs to one
of three classes, indicated by the variable Y. Predictors
X1, X2 and X4 are continuous vatiables. Predictor X3
is a categorical variable with possible levels taken from
set {A4,B,C,D}.

In APL we reptesent continuous and ordered
variables as simple numeric vectors. For categorical
predictors the natural reptresentation is a nested char-
acter vector of value labels. The same is true for a
response variable of class labels. But to simplify the
code we enumerate the classes and use a simple nu-
meric vector of class numbers instead. The data set,
shown in Table 1, is a2 nested matrix called data:

pdata
15 5
=data
2
disp datal1i 2:]
e ——
g™

Note that scalars from set {A,B,CD} are pre-
sented as one element character vectors, to allow long
names if necessary.

102

Tree-based model

A Classification Ttree constructed for this data is
shown in Figure 1.

Ni<p4S

2 3

Figute 1: Classification Tree for artificial data set

This figure and other tree plots in this paper were
created using the R Statistical system [2]. R is “GNU
S” — a language and environment for statistical com-
puting and graphics. This system is freely available for
major platforms, including Windows and Linux oper-
ating systems. R is similar to the award-winning S
system [8], which was developed at Bell Laboratories
by John Chambers et al. It provides a wide variety of
statistical and graphical techniques (linear and nonlin-
ear modeling, statistical tests, time series analysis, clas-
sification, clustering, etc.) and a tich set of functions to
create and explore tree-based models. We used R and
S systems to validate the APL software developed in
this paper.

Possible splits

Growing the tree proceeds sequentially. As the
structure of ttees is hierarchical, splits are selected one
at a time, starting with the split at the root node and
continuing with splits of the resulting child nodes,
until splitting stops. Those child nodes which have not
been split become terminal nodes.

The different methods of split selection are dis-
cussed in the paper [1].

Let us statt from a simple example of selecting the
best split of a single continuous variable.

(x c)«(r18)(4/1 2)
5K C
1 2 3 45486 7 8
11112 2 2 2
Variable ¢ represents the class of several objects,
and vatiable X is an attribute to be used for classifica-

tion. It is clear that the best partifon is given by

Alexander Skomorokhov and Vladimir Kutinsky

Proceedings of the APL 2001 Conference

X< . 5. In out case, the vatiable ¥ has L.=8 levels and
there are a total of I-7 possible splits. To select the
best one we need a criterion to compare the different
splits. That kind of ctetion is based on the misclassi-
fication rate. The best is a split which produces pure
nodes. A pure node is 2 node that contains objects of
one class only.

For categorical predictors the consideration is a bit
mote complex. We have discussed this topic in an-
other paper [4]. Let us consider an example of cate-
gotical variable x with a set of values {4,B,C,D}. The
split condition may be xe{A,B} (“* belongs to a subset
{A,B} of possible values”). The left child node is the set
of cases for which this condition is true. The right
child node condition may be considered either as the
left node condition negation ot as xe{D,C}, because
set {D,C} is a complement of set {4,B}.

To try different splits with a categorical predictor
we have to create a set of possible subsets of its values.
The number of all possible subsets is equal to 2L,
where L is the number of categotical variable levels.
We do not need an empty subset and a subset equal to
a whole set of levels. We also do not need to keep
both subsets, if one of a pair is a compliment of an-
other. For instance, splits xe{A4} and xe{B,C,D}
produce the same child nodes, but in different left to
right order.

The total numbet of useful subsets is equal to

2% — 1. These subsets may be generated using func-
ton Subsets:

(o] z<«Subsets x;i:n

(1] x<Unique x

[2] i«(np2)Ti12*n+px

[3] i<«(~-(+#i)e0,n.n-1)/1
[4] 1+<c[1]1

[5] z«'!

[6] L:2«z,cti

[7] i«i-z,-z

[8] =+(0<pi)/L

[9] 2z+z/cx

A well-known APL idiom generates a list of
unique values of a vector:
[0] u«Unique x
(1] u«((x\x)=1px)/x

The function Subsets takes a nested character
vector of a categorcal predictor as its right argument

and returns a nested vector of possible subsets. For
instance:

Classification Trees in APL

disp Subsets datal;3]

Deviance

Let us count the numbet of objects of each class
at some node IN;and denote it as s for a class 7. The

total number of objects for this node 1s n; = E"if .
J
Now we may estimate probabilities p; of each class at

n,.

this node as p; = —L_ 'The purity of a node i may be
n,

then characterized by entropy:

Hi=_2'EPijl°gzPij
]

which equals zeto for a pute node (note that 0x/gg.0
gives 0) and takes some positive value for a mixture of
classes. That means that we have to select a split that
minimizes entropy. It may be illustrated with entropy
values for different probabilities of 2 classes at a given
node:

p<(.5 .5)(.7 .3)(.9
{72x+/wn20w}"’p
2 1.76258179 0.9379911872 0.02281551547

.1)(.999 .001)

The most pure distribution occurs when p,,=0.999
and minimum entropy when p,,=0.001.

In the construction of tree models, another crite-
tion, known as deviance [3], is used more often. For a
given node 7, deviance is given by:

D; = —22 ng log Py
J

Deviance has a value of zeto value for a pure
node. It is very close to entropy but uses multiplier #;
instead of p; The meaning of this difference will be
clear a bit later.

Now consider a node ¢ splitting into nodes 7 and &.

If the corresponding values of deviance are denoted as
D; D; and D: then the reduction in deviance is

D; —D; — D, . The goal is to select a split, which

maximizes the reduction in deviance.

103

Proceedings of the APL 2001 Conference

Deviance is calculated with the following APL
function:

(o] d<«Deviance class:n;p

[1] n++/(Unique class)e.=class
(2] p<«nipclass

[3] d+«"2x+/nu2ep

The right argument is a vector of class indices and
estimates the number of objects of each class (vector
n) and corresponding probabilities (vector p).

Let us now return to our previous example:

c
11112 2 2 2

+d+>Deviance " (171+pc){(atw)(atw)} cc

0 13.7931939
0 11.01955001
0 7.219280949
0 0

7.219280949 O
11.01955001 O
13.7931939 0

The APL expression above calculates the deviance
of child nodes for each possible split from .A={x},
B={ocz-xs} to A={sc1-2;}, B={xs}, where A and B
stand for child node subsets aftetr a split The first 4
splits give pure left node (class 1) and the mix of
classes in the tight node. The last 4 splits petform vice
versa. Only the ffth split (equivalent to split condition
x=4.5) creates two pute child nodes. The reduction in
deviance for each possible split is given by the APL
expression:

(Deviance c)-+/d
2.206B806096 4.980449991 B8.780719051 16
8.780719051 4.980449991 2.2068B06096

The maximum value of 16 is achieved with the
optimal x<4.5 split.

Split selection

In order to find the best split, it is necessary to te-
view all possible splits for each predictor variable at
each node and choose the one that produces the larg-
est improvement in goodness of classification. So, as the
best split we choose the one that leads to the minimal
value of deviance (or equivalently, the largest reduc-
tion in it).

The APL function Partition returns the best
split of a given predictor x (right arpument) and a
given vector of class numbers class (left argument).
The result is an optimal threshold and a cotresponding
value of deviance for continuous predictors, or a sub-
set of levels and deviance for categorical predictors.

104

(o] z«class Partition x;y;:por;p

(1] z<«ro0

(2] por«Unique x

(3] :If 1=3x

Cu] por<«por[ipor]

(51 s(1<ppor)/'por+.5x2+/por’

(6] :Else

(7] por+«Subsets por

(8] :EndIf

(9] :For p :In por

[10] y«Deviance(x Compare p)/class
[111 y«y+Deviance(-x Compare p)/class
(121 z+«z,Y

(13] :EndFor

[14]) p+«zi'lL/z
(15) z+por(pl,zlpl

To unify processing of continuous and categortical
predictots we use a simple utility function, compare:

[0l l«x Compare p
(1] :If 1==x

(2] l+xs<p

(3] :Else

(4] l«xep

(5] :EndIf

The type of a predictor (left argument) is distin-
guished using its depth and the right argument is either
a threshold or a subset of values. The following exam-
ples illustrate the use of Partition:

c+«l1 1 11 2 2 2 2
X«1 2 3 4 5 6 7 8
c Partition x

4.5 0

s+, ""ABAACDDC'
disp c Partition s

In the first example the best threshold is equal to
4.5 and in the second one (categorical predictor) the
best subset is {D,C}. Both splits lead to a petfect clas-
sification and therefore have deviance equal to 0.

The following function Sp1it finds the best split
among all predictors and all splits for each predictor.

[o] z+class Split data;x;1i

(1] :If 1=pUnique class

(21 Z+4po

[3] :Else

(4] Zz+«>(cclass)Partition c[1ldata
[s51] i«z[:;2]111l/2[:2]

[s] z+i,z[1;1],2p0

[7] :EndIf

(8] 1«+/(Unique class)e.=class
(9] z«z,1+(i1[/i)>Unique class
[10])] z<«z.pclass-1i

Alexander Skormorokhov and Viadimir Kutinsky

Proceedings of the APL 2001 Conference

It takes the whole data set (attix) as the tight ar-
gument and the classification vector as the left atgu-
ment. If the current node is a pute one (a check at line
[1]), then the fitst 4 items of a result are set to O to
indicate a terminal node (leaf). Otherwise, we find the
best split for each predictor (line [4]) and define which
predictor has to be used to perform a split (lines [5-6]).
Finally, we add to the result a class label for the cur-
rent node (lines [8-9]) and a misclassification rate (line
[10]). A class label is assigned to a class with the high-
est probability (Bayes decision rule) o, equivalently, to
a class mostly reptesented at this node.

Recursive partitioning

Now we are ready for the job of growing a classi-
fication tree. This construction is known as recursive
Dartitioning. A recursive function GrowTree petforms
this task:

[0] tree«{i}GrowTree data;cl;1;j;
right;por;:sp

(1] s(o=0ONC'i')/ 1«1’

(2] cledatal;2>pdatal

(3] sp+«cl Split ~1+[2]data

[4] tree+«0 7p0

(5] :If spl1l=0

left;

[s] tree«tree,.[1]i.sp

[7] :Else

[a] spl3 ul«0 1+2xi

[9] tree«tree,[11i.sp

[10] (j por)«spl1 2]

(11] left«(datal; jlCompare por)+data
(12] right+«(~datal;jlCompare por)#data
[13] tree«tree,[1)(2x1i)GrowTree left
[1u] tree«tree,[1]1(1+2x1)GrowTree right
(15]:EndIf

The right argument is a mattx of data. An op-
tional left argument is used in recursive calls and gives
a current node a number. It takes value 1 for a root
node (line [1]), when the function is called for the fitst
time. The result is a classification tree represented as a
7-column matrix. The meaning of the result columns
will be explained a bit later. In line [2] we take a re-
sponse vatiable (class labels) given in the last column
of data matrix. Line [3] finds the best split as it was
discussed above. If the curtent node is a terminal one
(check in line [5]) then its data is directly concatenated
to a matrix of the tree (line [6]). Otherwise, the num-
bers for child nodes are assigned in line [8]. The root
node takes the number one. Each subsequent level of
a binary tree has twice as many possible nodes (2, 4,
16, 32,...), which are enumerated from left to right. In
line [10] from a result of function Split we take the
best predictor index j and the threshold value por
(or a subset of values for a categorical predictor). In
lines [11-12] we petform an actual split creating data

Classification Trees in APL

subsets for the left and right child nodes. And finally,
the function is called recutsively for each subset of
split data (lines [13-14]).

Let us now build a tree-based model for the artifi-
cial data set desctibed above.

pt«GrowTree data

5 7

=t
3

disp ¥t
--’ ____________________ -
+1 1 5.45 2 3 1 10}
12 o 0 001 ol
|13 3 D ¢ 6 7 2 5|
l6 0 1] 003 0]
17 o 0 oo 2 ol
e e e e e e e e e e e - ——— 1

Each row of the result corresponds to a node. We
constructed a tree of 5 nodes. The depth of the result
is 3 because it contains nested vectors of categorical
predictor subsets. If only continuous predictors are
used, then the result is a simple numetic matrix. To
display the output we call a utility function, disp, to
format the matrix of the resulting tree.

Let us discuss the structute of a tesult in more
detail. The fitst three columns are the number of node,
the number of a predictor to be used for the split and
a threshold value (or levels subset) to apply to that
predictor. A zero value for 2 predictor index (and for a
threshold) indicates a terminal node. For instance, in
the root (row 1) we should split data on predictor X;
and use threshold value 5.45. Columns 4 and 5 give us
the numbers of the child nodes. At node 3 (tow 3) we
petform split on condition X; €{D,C} and the child
nodes are 6 and 7 (tows 4 and 5), which are both
terminal nodes. The last two columns (6 and 7) are the
class label and the number of classification errots for
each node. Now we can draw the ttee. The result is
shown in Figure 1.

Using the Tree

The main use of a tree-based model is prediction
or classification of new data points. APL function
Predict petforms this task:
(o] z+«data Predict tree;por;i;j:k

[11] s(1=ppdata)/'data<«,[.5]data’
[2] Z+10

[3] :For k :In 1+pdata

Cul 1+1

(5] :While —tree(i;2]1=0

(6] (j por)<«treeli;2z 3]
{71 :If 1==datal;j]

(el Jj~datalk;jl>por
(9] :Else

105

Proceedings of the APL 2001 Conference

[10] Jj+e-datalk;jlepor
[11] :EndIf

(12] I«treeli;u+j1]

[13] i«treel ;1111

C1y4] :EndWhile

[15] z+«z,tree[i;6]

(1i6] :EndFor

The right argument is a tree object built using the
function GrowTree. The function starts from a root
of the tree and selects a branch (child node) in lines [8]
(continuous predictor) or in line [10] (categorical
predictor). Then, it goes to a proper child node (lines
[12-13]) and repeats the process. It stops when a
terminal node is reached (line [5]) and, finally, the class
label of this node is assigned to a result in line [15].
The following examples illustrate the use of Predict:

5.1 0.5 (.,'4') 3 Predict t
! 5.5 0.5 (,'D'") 0.5 Predict t
3 .
datal;5]
111112223223333233
data Predict t
111112222233333
datal;5]a.=data Predict t
1

Another task of interest is the estimation of a mis-
classification rate for a given tree-based model. The
following simple function petforms this task:

[0] n<«NErrors tree
[1] tree«(treel;2]=0)#tree
[2] ne+/treel;7]

NErrors t

We may be interested in extracting a rule or a set
of rules from a tree-based model. For a given terminal
node we have an associated class label and a set of
conditions to reach this node from the root of a tree.
This may be expressed as a rule:

Class C IF Condstion 1 AND.. . AND Condition N

Functions GetRule and GetIF allow us to ex-
tract rules:

[o]
1]
[2]
[a]

r«t GetRule n

r+¢t GetIF n

((pr)ar)+«"3+(pr)=r

r«'Class ',(vtltl;2]1n;:6])," IF ',r

r+t GetIF n;i;x;v;o
z-(_ll

1«(<c[11t[;% 51)t"n
>(1=t(tl;1]wn;13)/0

(x v)«tll/i;2 3]
o«(1+2=my)alg>' l'=gt"
x«('V',vx),0l1+>/i],¥vv
r<«r,cx,' AND'

r«r,t GetIF t[L/i;11]

The left argument of the function GetRule is a
tree object and the right argument is a number of a
tetminal node associated with the rule to be extracted.
An illustration is shown below:

t GetRule 6

Class 3 IF Vi>5.45 AND V3= D C
t GetRule 7
Class 2 IF Vi>5.45 AND V3= D C

In order to document a classification tree model, it
is useful to format a mattix of a tree. APL function
Print does this job:

[0] f<«Print t;i

(1] iel2®1+t[;1]

[2] rfev7tl:1]

(31 tl;1l«f,7 ')

(4] fevt,' *x'[1+4t[;2]1=0]

[5] fe«(-2xi)b((2apf)+2x[/1i)+[2]Ff

Our format is similar to the style used in S-PLUS
and R. This means that we show a depth of each node
and mark terminal nodes with asterisks:

Print t
1) 1 5.45 2 31 10
2) 0 0 0 0 1 0 *
3) 3 D ¢C 6 7 2 5
6) 0 v} 0 0 3 0 *
7) 0 o 002 0 *
Cost-Complexity Analysis
Ovefrfitting

As 1t is well known, real data are always “noisy”
and the distributions for the classes ovetlap. While we
grow a tree using a training set we may adapt a model
too well to the particular training set we have. But this
model may wotk badly when we use it for prediction
on new data points. This problem is known as oerfit-
ting. Let us illustrate this problem using our artificial
data set. It has four predictors, but two of them (X
and X4) are useless (they were generated at random).
The only two predictors X; and X; perform perfect
classification in accordance with the tree built above.
It may be expressed with a set of 3 simple rules:

Class=1 IF (X1<5.45)

Class=2 IF (X;>5.45) AND (X;e{A,B})
Class=3IF (X;>5.45) AND (X;e{D,C})

Let us now bring in errors or noise to our data set:

dataz<data
dataz(1:1]+6.1
dataz2(15;3]«c,'4"

The first data point belongs to class 1. After we
changed the value of predictor X7 to 6.1 the first rule

Alexander Skomorokhov and Viadimir Kutinsky

Proceedings of the APL 2001 Conference

does not work and this point will be misclassified. For
point 15 (Class 3) we changed X; value from D’ to
‘A" Rule 3 does not work now and this point will be
misclassified to class 2. The following calculation
shows prediction using the “old” tree, but the new
data set indicates that two errors were created:

dataz2[;5s]
111112222233333

data2 Predict t
21111222223333?2

data2[;5)=data? Predict t
i 000O0UOOOOOOOTOU O?1

Let us now build the new tree using the new data:

t2«GrowTree data?
NErrors t2

0
Print t2
1) 1 5.45 2 3 11o

2) 0 0 0 01 0 x

3) 3 D C 6 7 2 6

6) 0 0 0O 03 0 «

7) 1 5.55 14 15 2 2
14) o 0 0 03 ©0 *
15) 2 2 3o 31 2 1

30) 1 6.45 60 61 1 1
60) 0 0 0 01 0 «
61) 0 0 0 0 2 0 «

31) 0 0 0 02 0 =

We may see that the number of errors is equal to 0
again, but at the cost of 2 doubly complex tree (6 ter-
minal nodes in comparison to 3 terminal nodes of an
“old” tree). Even more important is the fact that the
irrelevant noisy predictor X is now involved in the
classification (node 15). Let us how eXxamine an en-
titely new data point, which fits to rule 2) and there-
fore has to be predicted as a class 2 instance:

6.4 1.5 (,'"A") 3.62 Predict t

2

6.4 1.5 (,'4') 3.62 Predict t2
1

6.4 2.5 (,'A') 3.62 Predict t2
2

That is true if we use the initial tree model £. But
this point is misclassified with the new model £ 2, be-
cause the noisy predictor X; has a value of 1.5 and the
irrelevant rule at node 15 is fired. As predictor Xzis a
noisy one it may take any value. The third expression
of the example above shows that the classification is
changed if X;=2.5. It really looks like a random game
and we have to conclude that the tree model t2 is
overfitted.

Cutting the tree

At this stage, a question arises, “How do we cope
with the problem of ovetfitting?”” One way is to stop a
tree growing befote it teaches its maximal size. The

Classification Trees in APL

usual stop criteria are a small number of points at
some node or a small reduction in deviance. Another
apptoach is to remove unnecessary nodes after a tree
of maximal size has been built. We may limit the num-
ber of rules per class or the number of predictors used
for classification. Some insights of that kind may come
from previous research, diagnostic information from
other analyses, or even intuition.

In the next section we consider using special for-
mal procedures for selecting the “rHght-sized” tree,
known as cost-complexity pruning and cross-validation. Hete
we discuss a method and a function to reduce a tree
size to a given number of nodes.

The raw tesult of the GrowTree function is a
maximal classification tree. Now we want to get a
smaller subtree with fewer nodes from the maximal
tree. The problem is that there can be many different
trees of the same size. These trees of the same size
may differ in the proportion of misclassified cases.
The goal is to select the best subtree of a given size.

The function Cut takes the tree of maximal size
as its right argument and searches for the trec of size n
(eft atgument) such that its cost (misclassification
rate) is the lowest among all trees of the same size.

[o] Z+n Cut tree;cnt;memo;tmp;i;j:k
;row; e

[1] n+«nl+/treel;21=0

L2] :If n=1

[a) z+«treel.1;]

[4] z[1;2 3 4 5]«0

[51 :Return

[6] :EndIf

[71 Z<«0 7p0
[8] cnt<«0 © memo+0 3p0 o k«l1
[91] :While cntsn

[101] z«z,[1]1treelk;]

[11] :For I :In treelk;4 5]
f12] Je«treel;1)11

[13] rowe«treelj;]

[14] :If rowl2]=0

[15] z+z,[1]lrow

[16] cnt<cnt+1

[17] :Else

[18] e«treel;1]wrowly 51
[19]) e«rowl7]-+/treele:7]
[20] memo+memo,[1]11 e j
[21] :EndIf

[22] :EndFor

[231] :If n=cnt++pmemo

[24] tmp«treelmemol;3];]
[25] tmp(;:2 3 4 5]«0

[26] z«z [1])¢tmp

[27] :Return

[28] :EndIf

[29] memo<«memo[Ymemol :21];]
[30] k«i>memol ;31

[31] memo+1+[1]lmemo

[32] :EndWhile

107

Proceedings of the APL 2001 Conference

The algorithm for selecting a smaller size tree with
minimal costs is the following: having at a certain stage
a tree of size #, we choose which of (7:1) nodes (sup-
pose they are not terminal nodes yet) to split next in
order to get a tree of size (n+7). The choice is in favor
of that node that, after having been split, gives the
maximum dectease in deviance. Starting from the root
node (size = 1), the function examines all candidate
nodes grown till the moment. If they are not terminal
nodes (line [15]) it calculates the decrease in deviance
for each of them (line [20]) and stores the results in a
temporaty variable memo (line [21]). When all nodes
are examined, the function ranks the order of the
mattix memo and picks the node with the maximum
value of decrease in deviance (line [32]). The process
continues till the desired tree size n (left argument) is
reached (line [24]). Here, cnt equals to the number of
terminal nodes obtained to this moment and + pmemo
equals to the number of candidate nodes. Once no
further split is needed, the nodes in memo are re-
gatded as terminal ones (line [26]) and the process
ends. The result of the function is the tree of size n
with the lowest cost.

Print 3 Cut t2

1) 1 5.45 2 3 1 10
2) o 0 001 0 =
3) 3 D C 6 7 2 6
6) o 0 003 0 %
7) © 0 002 2 %

An example shown above demonstrates that the
reduced tree t2 fits exactly to a tree £, built on
“clean” data before etrors were inserted. But we have
now two misclassified points at node 7. This is

unavoidable, because the noisy data does not fit the
ideal rules.

Pruning the tree

In the previous section we learned how to find
trees smaller than the maximal tree size. Now we have
to snip off the least important splits on a regular basis.
This process is called cost-complexity pruning.

Let us denote the cost of the subtree T” as C(T").
We will estimate a cost as the total misclassification
rate of a tree. The size of a tree is equal to the number

of terminal nodes and is denoted as size(T”). Then the

cost-complexity measure is given by:
C,(T)=C(T")+ kxsize(T"),

where £ is the complexity parameter.

Let us assign the initial value to k as zero. Now for
every tree (including the fitst, containing only the root
node), compute the value of the function above. In-
crease the complexity parameter continuously until the

108

value of the function for the largest tree exceeds the
value of the function for a smaller-sized tree. Take the
smaller-sized tree to be the new largest tree and con-
tinue increasing the complexity patameter. Stop the
process when the root node becomes the largest tree.

Thus, we get a sequence of largest trees. The se-
quence has a number of interesting properties. It is
nested, i.e. evety tree contains all the nodes of the
next smaller tree in the sequence. Initially, many nodes
are pruned going from one tree to the next smaller
tree in the sequence, but fewer nodes tend to be
pruned as the root node is approached. Second, for
every tree in the sequence, there is no other tree of the
same size with lower cost. And finally, this is the very
sequence of trees out of which we will choose the
“right” tree size at the stage of cross validation.

To petform the task of pruning a classification
tree we have a function Prune which takes a tree to
ptune as its fight argument. The left optional argument
st stands for “step” and indicates the value of in-
crease of the complexity parameter k, line [15].

[0]lz+{st}Prune tree;prime;min;max;k;sizes
(1] s(o=0ONC'st')/'st+0.1"'

[2] max«+/treel;2]=0

(3] sizes«imax

[4] prime«sizes Cut ' ctree

[5] prime<(NErrors’prime),[1.5]sizes

[6] k<o

(7] z«¢0, 14(1]prime

[e] :While max=1

Lol min<-primel;1]+kxsizes

[10] min«minil/min

[11] :If min<max

[12] max+min

(L3l z+«z,{1lmax.primelmax;1].,k
[14] +EndIf

[(15] k+«k+st

[16]:EndWhile

In the line [4] we call the function Cut to search
for trees with minimal costs for all tree sizes. This tree
sequence is used later (lines [6-16]) to produce the
final sequence of the cost-complexity optimal trees.
‘The result is the 3-columns matrix. The first column
contains tree sizes. The second column contains the
corresponding costs and the thitd column contains the
cotresponding values of complexity parameter k:

Prune t2
6 00
I 1 0.5
3 2 1
1 10 4

Alexander Skomorokhov and Vliadimir Kutinsky

Proceedings of the APL 2001 Conference

Cross-validation and choosing the final
tree

Cross-validation is a general statistical approach to
select a model of optimal complexity. The main idea is
to separate datasets used for model learning and test-
ing. The quality of fitting on a training set increases
with the increase in model complexity. That is not true
for independent data of a testing set. Usually, the etror
rate of prediction reaches a small value at some “rea-
sonable” complexity level and then decreases very
slowly or even increases. Thus, we may select the sim-
plest model with an acceptable error rate.

The cost-complexity pruning considered in the
previous section gives us the tight sequence of trees,
ordered by complexity. We may now calculate the
misclassification rate for each tree of this sequence on
an independent dataset and select the optimal one.

In the present work we will use so-called V'-fold
Crvss-validation. This type of cross-validation is useful
when no separate test sample is available and the
learning sample is too small to have the test sample
taken from it. A specified patameter, 1/, determines
the number of random subsamples, as equal in size as
possible, that are formed from the learning sample.
The classification tree of the specified size is com-
puted 1/ times, each time leaving out one of the sub-
samples from the computations. This subsample is
used as a test sample for cross-validation. So that each
subsample is used (1”7 — 7) times in the learning sample
and just once in the test sample. The misclassification
rates computed for each of the 17 test samples are
then averaged and used for an optimal tree selection.

We use a function, Samples, to generate ran-
dom subsamples, which we need to petform the cross-
validation procedute. It returns n (left argument) ran-
dom subsamples of about the same size as its result.
The right argument size indicates the size of the
main sample.

[0) zen Samples size;p;r
(1] zesize?size

[2] p<«lsize+n

[3] resize-nxp

[4] pe(npp)+ntrp1

[5] peeppn

(6] =zepcz

Here is an example of its work:
disp 2 Samples 10

Classification Trees in APL

The next function CrossValidate performs V-
fold Cross-validation. Its left argument n is the V
parameter and the right argument is the tree object.

[0] z+n CrossValidate tree;data;e;ee
sm;rnd; s;52z;tstest;train

[1]) (tree data)<«tree

[2] sz«d,1t[2]Prune tree

[3] rnden Samplestpdata

[4+] z<0 3p0O

[5] :For n

[6] e+10

[7] :For m :In rnd

[e] test+«datalm;]

:In sz

[91] trainedatalernd-cm;]
[10] t<«GrowTree train
[11] ten Cut t

[12] ee«+/testl[;2optest]=test Predict t
[13] e+e,eet+tptest

{14] :EndFor

[15] m«t/e+pe

[16] s«+/(e-m)*2

[17] s«(s+"1+pe)*0.5

(18] z«z.[1]n.m,s=s

[19]):EndFor

First, the function prunes the tree (line [2]). Then,
for every tree in the obtained sequence (line [5]), the
function prows a classification tree n times (line [7]).
Every time a new training set is used (line [10]). Pre-
diction accuracy is estimated on a new test set (line
[12]). In lines [15-17], a mean value and a standard
deviation of errors are calculated and passed to the
result (line [18]). The final result is the matrix whose
columns contain tree sizes, cotresponding cross-
validation costs and standard errors accordingly.

Let us apply functon CrossValidate to a
tree created with use of noisy data:

3 CrossValidate t2 data?2
1 0.8 0
3 0.6 0.2
4 0.66566666H667 0.3055050463
6 0.7333333333 0.2309401077

Results are shown in Fig.2, where we see the min-
imum misclassification rate for an optimal size-3 tree.

Cross-validation

0.9

E
G o8 7—-§
% 0.7 —t
..S oo v
B o5 — , ;
1 3 4 6

Tree size

Figure 2: Cross validation results for artificial data

109

Proceedings of the APL 2001 Conference

Thus, the automatic selection of an optimal size of
a tree allows us to avoid the loss in the predictive ac-
curacy produced by an effect of "ovetfitting".

Diagnostic Data Mining

As a Data Mining tool, tree-based modeling is in-
creasingly used for summarizing large multivariate data
sets. In this papet we demonstrate possibilites of this
technique in application to monitoring the vibration of
mechanical equipment in Nuclear Power Plants
(NPP). The basic information unit of vibration is the
specttum of a sighal measured by vibration sensors
placed on mechanical equipment. Changes in vibration
behavior and characteristics of a spectrum indicate
mechanical changes in the monitored equipment. The
data used in the paper were measured at a Nuclear
Power Plant in Novovoronehz, Russia. We discussed
the application to these data of Pattern Recognition
techniques in the papets [6, 7].

Problem description

A typical NPP vibraion monitoring system uses
many sensors, petforms tneasurements on a regular
basis, and calculates high-resolution spectra. In our
system there are 32 vibration sensors and each spec-
trum is estimated for 400 frequencies in the range O-
50Hz. The database size is growing rapidly and there
is the need for an exploratory technique for uncover-
ing structure in the data.

The system sensots and measured spectra differ in
many aspects:
e Sensor type and measured signal may be pressute,
absolute or relative displacement

® Sensor location, like stearn pgenerator or main
coolant pump, and different coolant loops

® Measurement ditection, as across ot along a pipe-
line
e Displacement direction, as vertical movement of a

reactor ot steam generator movement to and from
a reactor

All the above factors and any combination of
them may be used for data categorization, such as

® Spectra of steam generator or coolant pump
vibrations

® Spectra of steam generator vibrations for different
coolant loops

® Spectra of absolute and relative displacements

110

The main cdassification of interest is if 2 spectrum
from a patticular sensor belongs to a normal or ab-
normal class of vibrations. But discovering the com-
mon features and differences for other categoties, as
we mentioned above, may give very important infor-
mation about the system.

We successfully applied tree-based technique to a
concise description of any reasonable category of data
and large database summarization. Interesting patterns
have been uncovered and used for malfunction diag-
nostics. In this paper we brefly consider only two
examples of this research:

1. Classification of vibration spectra of steam gen-
erators or coolant pumps

2. Classification of vibration spectra of steam gen-
erators of different coolant loops

For graphic representation of data, we used our
implementation of AP207 emulator for Dyalog APL
[5]- In this paper we also described the syntax of asso-
ciated utilities.

SG-MP Classification

In this example we are interested in the differ-
ences between spectra of a Steam Generator (SG) and
the Main Coolant Pump (MP) vibrations. A set of
1098 spectra of both classes were divided into a train-
ing and testing sets:

ps
1098 400

pcl
1098

Unique cl
12

ptrain
500 LO1

ptest
598 401

The tree-based model was built using only data of
the training set:

t+«GrowTree train
NErrors t

The resulting tree is shown in Fig.3. This model
allows the right classification, but looks too compli-
cated (11 terminal nodes). Using the function Cut we
created a sequence of rooted subtrees of sizes from 1
to 8. Then we calculated the misclassification rate
using each subtree for prediction on independent test
data.

p+(ctestl;400]) Predict”(i18)Cut’ct
(18),0.51+/"(ctestl;401])=p

1 2 3 4 5 6 7 8
282 88 39 38 36 36 23 22

Alexander Skomorokhov and Viadimir Kutinsky

Proceedings of the APL 2001 Conference

VIS « doeadna Vid «ojazagnt

Y¥aD « 0 feniznz WY ¢ 8 pudugdn
I [0 u

=L T

u Lx Le

Vi au dazaant

M

L L

Figure 3: Full Tree for SG-MP Classification

This model gives cotrect classification, but looks
too complicated (11 leaf nodes). Using the function
Cut we created a sequence of subtrees of sizes 1 to 8.
Then we calculated the misclassification rate using
each subtree for prediction on independent test data.
p+(ctest[;1400]) Predict™(18)Cut’'ct

(18),[.51+/"(ctest[;401])=p

i 2 3 4 5 6 7 8
282 88 39 3B 36 36 23 22

This result allowed us to select an optimal tree
with only 3 tertninal nodes:

t3«3 tr.Cut t
Print ta

1) 196 0.04816263452 2 3 1 242
2) €9 0.06912294284% 4+ 5 1 60
3) o0 00 2 4
4) 00 0 01 16 *
5) 00 00 2 0 ¥

100x(+/clzs Predict t3)+pcl

5.373406193
As it is shown above, the prediction error of an

optimal tree is about 5.4%. It is more than acceptable
for our goal of dataset summarization. And only 2 of
400 predictors (spectrum values at frequencies 69 and
196) have been used for classification. The following
simple rules describe the main structure in data:

5(ct3) GetRule™3 4 5
Class 2 IF V196>0.048

Class 1 IF V196<0.048 AND V6950.069
Class 2 IF V196s0.048 AND V69>0.069

Let us consider median spectra of each class for
the above rules intetpretation:

med+«{0.5x+/wl (4w)[f0.5=x0 1+pwl]}
mi«med 'c[1]1(cl=1)+s1
m2+med 'c[1](clI=2)#s1

Classification Trees in APL

plot (1400) m1 m2

LT r VAL L J

omy, } —_ } 1 _ 1 1 .
1o

[} E] 1h E 2 =0 alb o

Figure 4: Median spectra for classes SG and MP

Two vertical lines in the Fig.4 indicate frequencies
used in the classification tree. It may be seen, for in-
stance, that class MP has a higher level for a large peak
at frequency 196. This is the main frequency of a
pump wheel rotation. A sensor located on the coolant
pump detects the associated vibration more easily.

Different coolant loops classification

Let us now find rules to distinguish spectra from
sensors located at the different coolant loops. Thete
are 6 coolant loops at the reactor we work with. In
general, there should not be any difference between
vibration of the mechanical equipment of the same
type, but located at different coolant loops. Therefore,
we expect a latge tree with only a few objects at each
terminal node. Let us check if that is the case. We used
for constructing the tree a dataset of 574 spectra from
6 classes:

ps
574 400
pcl
574
Unique cl
12 3 456
+/(16)o.=cl
117 107 €66 93 125 66

The resulting tree is a complicated one:

t«GrowTree s,cl

Print t
1) 71 0.06326232251 2 3 5 Li49
2) 399 0.04046299416 4 5 1 247
W) 35 0.069135 8 9 2 76

a) 60 0.0530531941 16 17 3 10
16) 00 0 0o 3 0 =
17) 9 0.082941066 34 35 4 4
3ay) oo 0 0 i 0 %
3s5) 1 0.087449465 70 71 6 2
70) 00 0 0 6 0 *
71) 1 0.10142617 142 143 1 1
142) 00 0 0 5 0 =%

111

Proceedings of the APL 2001 Conference

143) o 0 0 0 1 0 =

9) o0 0 0 2 0 *

5) 91 0.06462439149 10 11 1 65

10) 10 0.07983529657 20 21 6 1

20) 00 0 05 0 *

21) 00 0 0 6 0 *
11) 00 0 01 0
3) 84 0.0575261014 6 7 5 87
6) 00 0 [V 0 *
7) o0 0 0§ 0 *

We used the whole dataset for learning. Let us ap-
ply the cross validaton procedure to define the right
size of a tree:

+cv+5 CrossValidate t (s,cl)

1 0.8013424867 0.03737851893

2 0.6063463005 ©0_06012736467

3 0.4059344012 0.05174932396

4 0.2595728452 0.014051453

5 0.1620594966 0.02463777562

6 0.03485888635 0.01743974679

7 0.02613272311 0.01506165904

8 0.02091533181 0.D01457146716
11 0.01743707094% 0.01742018558

0 1 plot 1 2/<[1lcvl;1 2]
w.
!I-"- \
\k‘
\"\
by 1 1 \— ' ~ 1
d as | 73 © 1ds

Figure 5. Cross validation results

We see that the misclassification rate almost stops
decteasing after tree size reaches 6. The tree of that
teduced size is shown in Figure 6 (a plot was created
in the R statistical system):

V71 < D 0632823
=T

V3agg «

vasl<_c'.b_ufl:s1 vn:l.;p_.u_q_ulzu

LS L1

0404863 VB4 < O

-

La LB

5752a1

Figure 6: Reduced tree structure

112

This tree is unexpectedly simple and accurate. Er-
ror rate is only about 2%.
t6«6 Cut ¢

100« (NErrors té6)=+ps
1.916376307

Other news is even more important. The first split
divides all data into two groups of coolant loops
{1,2,3,6} at the left branch and {4,5} at the right one.

Let us have a look at median spectra of these two
groups to interpret the observed classification:

mi+med 'c[1](clel 2 3 6)#s
m2+«med 'c[1](cled 5)+s
plot (1400) m1i m2

' ' 1 : 3 ' N —
[£ 1. 1 2o ab ado Ft) ato

Figure 7: Median spectra for two groups of cool-
ant loops

The vettical line in Figure 7 indicates the root split
frequency. It may be seen that spectra at loops 4 and 5
have a peak at frequency 71 and the other loops have a
spectrum dip at the same frequency. To see how
significant this difference is, let us use a Box-Whisker
plot for two subsets of the predictor 71 values:

x1+(cler 2 3 6)#s[;71]

x2+(cley 5)#s[;71]
bw_plot x1 x2

o

"l |

Ll i L 4 1 J
[o1 i 13] as 3

Figure 8: Box-Whisker plot for two groups of
coolant loops

The difference is highly significant and therefore
we may conclude that the important distinctive feature

Alexander Skomorokhov and Viadimir Kutinsky

Proceedings of the APL 2001 Conference

of the vibration characteristics of coolant loops 4 and
5 has been uncoveted.

Conclusion

A popular Data Mining technique known as Clas-
sification Trees has been considered in detail. All ma-
jor parts of the technique starting from split selection
and growing the tree and finishing with tree structure
optimization wete discussed and illustrated by numeric
examples in APL.

It has been shown that Dyalog APL allows effec-
tive implementation of the softwate to build tree-
based models and to use them for prediction. Use of
control structures has simplified the code and im-
proved readability significantly. The functions Print
and GetRule may be mentioned as a good
illustration of APL’s power in array processing. The
use of dynamic functions has been secen as very
convenient for exploratory calculations in the APL
session.

A case study of summarizing of large datasets and
uncovering hidden pattems in the atea of Nuclear
Power Plant vibration monitoring has been discussed
and illustrated by real life examples.

As future work directions, we would like to
menton:

e Implementation in APL of Regression Trees
technique

® Development of utilities for graphical representa-
tion of tree-based models

Classification Trees in APL

® Modifying existing software to allow direct build-
ing of a tree with data stored in a relational
database.

References

[1] W.Y.LOHAND Y.S. SHIN, “Split Selection Methods
for Classification Trees”, Statistica Sinica, 1997, Vol. 7,
pp-815-840

[21 The R Project for Statistical Computing. www.x-
project.otg

[3] B.D.RIPLEY, Pattern Recognition and Neural
Networks. University Press, Cambtidge, 2000.

[4] A.O.SKOMOROKHOV, “A Knowledge Discovery
Method - APL Implementation and Application™.
APL 2000 Conference Proceedings, Berlin, Germany,
APL Quote Quad Vol. 30, Num. 4W.N.

[5] A.O. SKOMOROKHOV AND A.N. KORNILOVSKY,
“Emulation of IBM APL2 auxiliary processor AP207 in
Dyalog APL”, Vector, Vol.14, No.1, p.64

[6] A.O.SKOMOROKHOV AND M.T. SLEPOV,
“Information Authenticity Control in Vibro-
Diagnostics System of the Novovoronezh NPP”.
Commeunications of Higher Schools: Nuclear Power
Engineering. - Obninsk, 1999.

[71 A.O. SKOMOROKHOV AND M.T. SLEPOV, “Pattern
Recognition in APL with Application to Reactor
Diagnostics™, APL.98 Conference proceedings: APL. Quots
Owad, Vol. 28, Num. 4, Rome, Italy, July 1998.

[8] VENABLES AND B.D. RIPLEY, Modern Applied
Sttistics with S-PLUS, Springer, 1999

[91 N.G.ZAGORUIKO, Appled Methods of Data and
Knowledge Anakysis, Novosibirsk, published by Institute
of Mathematics, 1999.

113

