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Abstract 
This paper considers the problem o f  classification 

tree based data analysis. Among  the topics discussed in 
the paper axe: growing a classification tree using 
CART style exhaustive search for spl/ts, selecting the 
tight size for the tree using minimal cost-complexity 
cross-validation pruning, and examples o f  the applica- 
tion o f  classification trees. 

The algorithms are implemented in Dyalog APL. 

Application example is based on data from vibra- 
tion monitoring equipment installed on a Nuclear 
Power Plant in Novovoronehz, Russia and includes 
classification of  v ib~t ion spectra of  steam generators 
or coolant pumps and classification o f  vibration spec- 
tra of  steam generators o f  different coolant loops. 

Keywords:  Data Mining, Classification Trees, 
Pruning, Cross-validation, Vibration Monitoring. 

Xntroduction 
Tree-based models provide a number o f  benefits: 

• A natural approach to join processing of  both 
categorical and continuous variables; 

• Important information is revealed as the derision 
rules are cons matted; 

• Easy interpretation o f  the results; 

• Large datasets (both the number o f  cases and the 
number of  predictors) can be dealt with. 

What  is a Clasaiificatio# T ,~e?A Classification Tree is 
a hierarchical set of  classification furies, which, in case 
of  numeric predictors ordy, axe o f  the form: 
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i f  x~ _< b~ a n d  x 3 > b 2 

then y is most likely to be % 

where bi are some thresholds. 

Classification Trees can work with both numeric 
and factor prediction variables. In this case the classi- 
fication rules are o f  the form: 

x, _<b, x, {s.D } 
then y is m o s t  l ikely to be c 2 

Another feature of  Classification Trees is their hi- 
erarchical nature, i.e., the ability of  classification trees 
to examine the effects of  predictor variables one at a 
time, rather than just all at once, as it is in case o f  dis- 
criminant analysis. 

Classification Trees are displayed graphically, mak- 
ing their interpretation much easier than a strictly nu- 
merical presentation 

Ira stma, Classification Trees are very attractive be- 
cause they provide a simple and dear  methodology for 
data analysis. 

Growing the Tree 
Input data 

Let us consider a number o f  objects 
A = {a 1, a2,. . . ,  a s }, described by attributes 

{ . ra , x2 , . . . , x , , y  }. The x I are called classification or 

predictor variables and y is a response variable. Pre- 

dictors can be both numeric and factor variables. Let 
us consider also a number of  classes 
C = {c I , c z . . . . .  c t }. Response variable .y indicates the 

dass o f  each object in A .  

For illustration purposes we will use an artificial 
data set represented in Table 1. 
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T a b l e  1. E x a m p l e  data set 

N Xl X2 X9 'X4 Y 

1 5.1 0.5 A 3 1 

2 5.1 4.5 B 3 1 

3 4.4 4 C 3 1 

4 5.4 3.5 C 4 . 5 1 1  
5 5 3.5 D 4 , 1 

6 7.7 5 A 1.5 2 

7 6.1 15.5 B 3.5 2 

8 6.8 0.5 B 2.5 2 

9 5.6 4 B 3.5 2 
I 

10 6.7 5 A 1.5 2 

11 6.4 1 D 0.5 3 I 
12 6 4.5 , C  2.5 3 I 

13 6.7 2 C 3 3 

14 5.5 4.5 D 5 3 

15 5.5 0.5 D 0.5 3 

T h e r e  are  a to ta l  o f  15 objec ts  C£able 1 rows) ,  de- 
sc r ibed  wi th  4 at t r ibutes .  E a c h  ob jec t  be longs  to  o n e  
o f  t h ree  classes, i nd /ca ted  by  the  var iable  Y. P red ic to r s  
X I ,  ~ and X 4  are c o n d n u o u s  variables.  P r e d i c t o r  X 3  
is a categorical  var iable  wi th  poss ib le  l e v d s  taken  f r o m  
set  {A,B,C,D}. 

I n  A P L  we  r e p r e s e n t  c o n t i n u o u s  a n d  o r d e r e d  
variables as s imple  n u m e r i c  vec tors .  F o r  categorical  
predic tozs  the natura l  r ep r e sen t a t i on  is a ne s t ed  char-  
ac ter  v e c t o r  o f  va lue  labels. T h e  same is t rue  fo r  a 
r e s p o n s e  var iable  o f  class labels. B u t  to  s implify the  
c o d e  we  e n u m e r a t e  the  classes and  use  a s imple  nu-  
mer i c  v e c t o r  o f  class n u m b e r s  instead.  T h e  data  set, 
s h o w n  in T a b l e  1, is a ne s t ed  matt:ix called d a t a :  

pdata 
15 5 

.data 
2 

dlsp data[1 2;] 

I 5 .1  o . s  IAI 3 1 
! _ I 
. . | .  

I s . 1  4 .5  I B i  3 1 

| 6  

N o t e  tha t  scalars f r o m  set  {A,B,C,D} a te  pre-  
s en t ed  as o n e  d e m e n t  charac te r  vec tors ,  to  a l low lo n g  
names  i f  necessary.  

Tree-based model 
A CLassification T r e e  c o n s t r u c t e d  fo r  this data  is 

s h o w n  in F /gure  1. 

~ L 3  

F i g u r e  1: CLassification T r e e  fo r  artificial data  set 

Th is  f igure a n d  o th e r  t ree  p lo t s  in this p a p e r  were  
c rea ted  us ing  the  R Statistical sy s t em [2]. R is " G N U  
S'" - a Language and  e n v i r o n m e n t  fo r  statistical c o m -  
p u t i n g  a n d  graph/cs.  Th i s  sys t em is f reely available f o r  
m a j o r  pLatforms,  inc lud ing  W i n d o w s  a n d  L / n u x  oper -  
a t ing systems.  R is similar to  the  award -winn ing  S 
sys tem [8], w h i c h  was  d e v e l o p e d  at  Bell  Labora to r i e s  
b y  J o h n  C h a m b e r s  e t  al. I t  p ro v id e s  a "wide var ie ty  o f  
statistical a n d  graphica l  t echrdques  Clinear and  non l in -  
ear mode l ing ,  statistical tests, t ime  series analysis, clas- 
sification, clustering,  etc.) a n d  a r ich  se t  o f  func t ions  to  
crea te  an d  exp lo re  t zee-based  mode l s .  W e  us ed  R and  
S sys tems to  val idate  the  A P L  so f tw a re  d e v e l o p e d  in  
this paper .  

Possible splits 
G r o w i n g  the  tree p r o c e e d s  sequentially.  As the  

s t ruc ture  o f  t rees is hierarchical ,  splits are  se lec ted  o n e  
at a t ime,  s tar t ing wi th  the  spli t  at  the  r o o t  n o d e  a n d  
c o n t i n u i n g  w i th  spl/ts o f  the  resu l t ing  cchild nodes ,  
unt i l  sp l i tung s tops.  T h o s e  child n o d e s  w h i c h  have  n o t  
b e e n  spl/t  b e c o m e  te rmina l  nodes .  

T h e  d i f f e r en t  m e t h o d s  o f  spl/t  se lec t ion  are dis- 
cussed  in the  p a p e r  [1]. 

L e t  us s tar t  f r o m  a s imple  exarnple  o f  select ing the  
bes t  split  o f  a single c o n t i n u o u s  variable .  

( x  c ) ~ - ( ~ a ) C 4 / 1  2) 
mX C 

1. 2 3 q. 5 6 7 8 
:1. 1. 1 ::1. 2 2 2 2 

Variable  c r ep resen t s  the  class of  several  objects ,  
an d  w r i , b l e  x is an a t t r ibu te  to  b e  u s e d  fo r  classifica- 
t ion.  I t  is clear tha t  t he  bes t  pa r t i t i on  /s g iven by 
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xSL~. 5. In  ou t  case, the variable x has L=8 leveJs and 
there are a total o f  L - I  possible splits. To  sdec t  the 
best one we need a cfitczion to compare the different 
splits. Tha t  kind of  cczitczion is based on the rrdsdassi- 
fication rate. The  best is a split which produces pure 
nodes. A pure node  is a node  that  contains objects o f  
one class ordy. 

F o r  categorical predictors the consideration is a bit 
more  complex• We have discussed this topic in an- 
other  paper [4]. Le t  us consider an exarnple o f  cate- 
gozical variable x with a set o f  values {A,B,C,D}. The 
split condition may be xe{A,B}  ('Se belongs to a subset 
{A,B} ofpossible values'). The left child node  is the set 
o f  cases for which this condit ion is true. The  f ight  
child node  condi t ion may be considered either as the 
left node  condi t ion negation or as xe{D,C}, because 
set {D,C} is a complement  o f  set {A,B}. 

T o  try different  splits with a categorical predictor  
we have to create a set o f  possible subsets o f  its values. 
The  number  o f  all possible subsets is equal to 2 L, 
where L is the nurnbet  o f  categorical variable levels. 
We do no t  need  an empty subset and a subset equal to 
a whole  set o f  levds. We also do no t  need  to keep 
bo th  subsets, i f  one o f  a pair is a compl iment  o f  an- 
other. For  instance, splits x e { A }  and x¢{B,C,D} 
produce the same child nodes,  but  in different left to 
fight orde_t. 

The  total number  o f  useful subsets is equal to 

2 L'4 - 1. These subsets may  be generated using func- 
tion Subse t s : 

[0] z~-Subsets xll;n 
[i] x~-Unlque x 
[2] l÷(np2)Tt2*n~-px 
[3] l~-(-(+~i)(o,n,n-l)/l 
C4] I÷c[1]i 
[5] z~-'' 
[6] Z : z÷z. c÷./ 
[ 7 ] I÷i-Z,-Z 
[ 8 ]  - ~ ( 0 < p / ) / Z  
[ 9 ] z ÷ z / " c x  

A well-known A P L  idiom geenerates a list o f  
unique values o f  a rectos: 

[0] u÷Unlque x 
[i] u~-((xtx)=tpx)/x 

T h e  funct ion S u . b s e  t,s" takes a nes ted  character  
vector  o f  a categozical predictor as its ziglat a rgument  
and returns a nested vector  o f  possible subsets. For  
instance: 

dlsp SuJ~sets data[;3] 
=-~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I l .-~. l l .-~- l l .-~. -~-. l l .-~. l 
I I IDl l I ICI I I ICl IDI I I Ial I 
I I i _ l  I I ' - '  I I ' - '  ' - '  I I ' - '  I 
I I (  . . . .  I | {  . . . .  I I (  . . . . . . . .  I I [  . . . .  I 

l i e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I . . . . . .  I I . . . .  + -  I I . - ~ -  I I 
I I B I  I D I  I I l a l  I C I  I I I A I  I I 
I . . . . . .  I I . . . . . .  I I ' - '  I I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! 

Deviance 
Let  us count  the n u mb e r  o f  objects o f  each c/ass 

at some node  N i a n d  denote  it as n~,; for  a da s s j .  The  

total n u mb e r  o f  objects for  this node  is n~ = Z no " 
J 

N o w  we may  estimate probabilities p?  o f  each class at 

n# 
this node  as p# = The  purity o f  a node  i may  be 

nt 

then characterized by entropy: 

H i = - 2 ~  p#log2 P0 
J 

which equals zero for  a pure node  (note that O×/o~O 
gives 0) and takes some positive value for a mixture o f  
classes. Tha t  means that  we have to select a split that 
minimizes entropy. I t  may  be illustrated with entropy 
values for different  probabilities o f  2 classes at a given 
node: 

p÷( .5 .5)( .7 .3)( .9  .1)(.999 .001) 
(- 2 x+l~0.2®z0}"p 

2 1 . 7 6 2 5 8 1 7 9  0 . 9 3 7 9 9 1 1 8 7 2  0 . 0 2 2 8 1 5 5 1 5 4 7  

The most pure distribution occurs when pil =0.999 

and minimum entropy whenp~=O.O01. 

In the construction of tree models, another crite- 
rion, known as ~Wdance [3], is used  more  often. For  a 
given node  i, deviance is given by: 

D i = - 2 ~  n #  log p #  
J 

Deviance has a value o f  zero value for a pure 
node.  I t  is very dose  to ent ropy but  uses multiplier n~ 

instead o f  p#, The  mean.hag o f  this difference will be 
dea r  a bit latex. 

N o w  consider a node  i splitting into n o d e s j  and k. 
I f  the corresponding values o f  deviance are denoted  as 
Di] ~l and D~ then the reduct ion in deviance is 

D i - D  i - D  k . The  goal is to select a split, wkich 

maximizes the reduct ion in deviance. 
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Deviance is calculated with the following APL 
function: 

[o] d~-Devlance class:n;p 
[1] n~-+l(Unlque class)°.=class 
[2] p÷n÷pclass 
[3] d~--2x+/n~2®p 

The  right argument  is a vector  o f  class indices and 
estimates the number  o f  objects o f  each class (vector 
n) and corresponding probabilities (vector p).  

Let  us now return to out  previous example: 
c 

1 1 1 1 2 2 2 2 

+d÷=Devlance .... (t-l+pc){(a÷~)(=$s)}"cc 
0 1 3 , 7 9 3 1 9 3 9  
0 1 1 . 0 1 9 5 5 0 0 1  
0 7 . 2 1 9 2 8 0 9 W 9  
0 0 
7 , 2 1 9 2 8 0 9 4 9  0 
1 1 . 0 1 9 5 5 0 0 1  0 
1 3 . 7 9 3 1 9 3 9  0 

The  APL expression above calculates the deviance 
o f  child nodes for each possible split f rom A ={ x l } ,  
B={x2-xa} to A={xl-xT}, .B={xa}, where  A and B 
stand for child node subsets after a split The 6zst 4 
splits give pure leR node (class 1) and the mix of 
classes in the right node. The hst 4 splits perform vice 
versa. Only the fifth split (equivalent to split condition 

x=4..~ creates two pure child nodes. The reduction in 
deviance for each possible split is given by the APL 
express/on: 

( D e v i a n c e  c ) - + / d  
2 . 2 0 6 8 0 6 0 9 6  g . 9 8 0 L l - ~ 9 9 9 1  8 . 7 8 0 7 1 9 0 5 1  1 6  
8 . ' 7 6 0 7 1 9 0 5 1  q - . 9 8 0 u ,  4 9 9 9 1  2 . 2 0 6 8 0 6 0 9 6  

The max imum value o f  16 is achieved with the 
opt imal  xS4.5 split 

Split selection 
In order to find the best split, it is necessary to re- 

view all possible splits for each predictor  variable at 
each node  and choose the one that produces the larg- 
est improvement  in @odne;; of da, rsificatio,. So, as the 
best split we choose the one that leads to the minimal 
value o f  deviance (or equivalently, the largest reduc- 
tion in it). 

The  APL fianction P a r t 1  e l o n  returns the best  
spl/t o f  a given predictor x (right argument) and a 
given vector  o f  c/ass numbers  c1 ass (left argument). 
The  result is an opt/real threshold and a corresponding 
value o f  deviance for continuous predictors, or  a sub- 
set o f  levels and deviance for categorical predictors. 
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[0] z+class Partitlon x:y;por;p 
[1] z~to 
[2] por÷Unlque x 
[3] :If l=-x 
[4] por÷por[~por] 
[5] i(l<ppor)/'por~.5*2+/por' 
[6] :Else 
[7] por÷Subsets pot 
[8] :EndIf 
[9] :For p :In pot 
[I0] y+Devlance(x Compare p)/class 
[11] y~y+Deviance(-x Compare p)/class 
[12] Z÷Z, 7 
[13] :EndFor 
[i~] p÷ztLlz 
[15] z÷por[p],z[p] 

To  unify processing off continuous and categorical 
predictors we use a simple util/ty funcuon,  compare: 

[o] l~-x Compare p 
[i] :If l=mx 
[ 2 ] 14-x~p 
[3] :Else 
[ 4 ] 14-xep 
[ 5 ] : EndIf 

The  type o f  a predictor  (left argument) is distin- 
guished using its depth and the right argument is either 
a threshold or  a subset o f  values. The  following exam- 
ples illustrate the use of Par t i t i on: 

c~-i 1 1 1 2 2 2 2 
X ÷ l  2 3 q 5 6 7 B 
c Partltlon x 

q-.5 0 

S~-, "" ' ABAACDDC ' 
disp c Partitlon s 

I .-~ ........ . I 
I I ...... i o I 
I I I C I  I D I  I I 
I I ' - '  ' - '  i I 
I ' e  . . . . . . . .  ' I 

In  the first example the best  threshold is equal to 
4.5 and in the second one (categorical predictor) the 
best subset is {D,C}. Both splits lead to a perfect clas- 
sificauon and therefore have deviance equal to 0. 

The following function Sp i i t finds the best split 
among all predictors and all splits for each predictor. 

[0] z+class Split data;x;i 
[1] :If l=pUnlque class 
[2] z+~po 
[3] :Else 
[ W] z~-=(cclass)Partl tion"c[l]data 
[5] i÷z[;2]tLlz[;2] 
[ 6 ]  z ÷ l , z [ 1  ; 1 ]  ,2pO 
[ 7 ] : EndIf 
[6] l~-+/(Unlque class)°.=class 
[9] z4-z,l÷(it [/l)=Unique class 
[lO] z~-z,pclass-i 
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I t  takes the whole  data set (matrix) as the t ight  ar- 
gurnent  and  the classification vec tor  as the left argu- 
ment .  I f  the current  n o d e  is a pure  one  (a check at  line 
[1]), then  the first 4 i tems o f  a result  are set to 0 to 
indicate a terminal  node  (leaf). Otherwise,  we f ind the 
best split for  each predictor  (line [4]) and  define which  
predictor  has to be used  to pe r fo rm a split (lines [5-6]). 
Finally, we add  to the result a cLass label for the cur- 
rent  node  (lines [8-9]) and  a rnisdassifieation rate (line 
[10]). A class label is assigned to a class with the high- 
est probabil i ty (Bayes decision rule) or, equivalently, to 
a class mos t ly  represented at  this node.  

Recursive partitioning 
N o w  we are ready for  the job o f  growing a class/- 

f icadon tree. This  construct ion is known  as recursfve 
partitioning. A recursive funcdon  GrowTree performs 
this task: 

[0] tree~-{i}GrowTree data;el;l;]; left; 
rig]~ t ; pot ; sp 

[1] a(O=O~C'i')l'i~l' 
[2] cl÷data[;2=pdata] 
[3] sp~-cl Spllt -¢+[2]data 
[g] tree~O 7pO 
[5] :If sp[l]=O 
[6] tree~-tree.[1]l.sp 
[7] :Else 
[8] sp[3 ~,]~-o 1+2xI 
[9] tree~-tree,[1]1.sp 
[i0] Cj por)~-sp[1 2] 
[11] left~-(data[;]]Compare por)gdata 
[12] rlg]~t~-(-data[;]]Compare por)gdata 
[13] tree~-tree.[l](lxl)GrowTree left 
[ig] tree~-tree.[l](l+2xi)GrowTree rigfit 
[15 ] :EndIf 

The  f ight  a rgument  is a matr ix o f  data. An  op- 
t innal left  a rgument  is used  in recursive calls and  gives 
a current  node  a number .  I t  takes value 1 for  a roo t  
node  (line [1]), when  the funct ion is called for  the first 
time. T h e  result  is a classification tree represented as a 
7-colurrm matrLx. T h e  mean ing  o f  the result  columns 
w/U be explained a bit  later. In  line [2] we take a re- 
sponse v-o-i-hie (class labels) given in the last co lumn 
o f  data matriT_ Line [3] finds the best  split as it  was 
discussed above. I f  the current  node  is a terminal one  
(check in line [5]) then  its data is directly concatenated 
to a matrix o f  the tree 0ine [6]). Otherwise,  the hum-  
beers for  child nodes  are assigned in line [8]. The  root  
node  takes the n u m b e r  one. Each  subsequent  level o f  
a binary tree has twice as m a n y  possible nodes (2, 4, 
16, 32,...), which are enumera ted  f rom left  to fight. In 
line [10] f rom a result  o f  funct ion Sp  I i t we take the 
best  predictor  index j and  the  threshold  value p o t  
(or a subset  o f  values for  a categorical predictor).  In  
lines [11-12] we pe r fo rm an actual split creating data 

subsets for  the left  and  right  child nodes.  A n d  finally, 
the funct ion is called recursively for each subset  o f  
split data 0ines [13-14]). 

Le t  us n o w  build a tree-based mode l  for  the artifi- 
cial data set described above. 

pt÷GrowTree data 
5 7 

---t 
3 

dlsp ¥t 

+1 1 5 . g 5  2 3 1 10[ 
12 0 0 0 0 1 01 
13 3 D C 6 7 2 5 l  
16 o o o o 3 o l  
17 0 0 0 0 2 ol 
I . . . . . . . . . . . . . . . . . . . . .  ! 

Each  row o f  the result  corresponds to a node. We  
const ructed a tree o f  5 nodes.  The  depth  of the result  
is 3 because it cont,,ins nes ted  vectors o f  categorical 
predictor  subsets. I f  only  cont inuous  predictors axe 
used, then  the result  is a simple numer ic  matrix. T o  
display the  ou tpu t  we call a utility function,  d i  s p ,  to 
fo rmat  the mar,4T o f  the result ing tree. 

Le t  us discuss the  structure o f  z result  in more  
detail. The  first three co lumns  are the n u m b e r  o f  node,  
the n u m b e r  o f  a predic tor  to be used  for the split and 
a threshold value (or levels subset) to apply to that  
predictor.  A zero value for a predic tor  index (and for a 
tkreshold) indicates a terminal  node.  Fo r  instance, in 
the roo t  (row 1) we  should  split data on  predictor  X l  
and use threshold value 5.45. Columns  4 and  5 g/ve us 
the numbers  o f  the  child nodes.  A t  node  3 (row 3) we 
pe r fo rm split on  condi t ion  X~ 6{D,C} and the child 
nodes  are 6 and  7 (rows 4 and  5), which  are bo th  
terminal  nodes.  T h e  last two  columns (6 and  7) are the 
class label and  the n u m b e r  o f  classification errors for 
each node.  N o w  we can draw the tree. T h e  result is 
shown  in Figuze 1. 

Using the Tree 
The  main  use o f  a tree-based mode l  is predicuon 

or  classification o f  n e w  data points. A P L  funct ion 
P r r e d i  c t per forms  this task: 

[0] z~data Predict tree;por;l;];k 
[1] x(l=ppdata)/'data÷.[.S]data, 
[2] z ~ t O  
[3] :For k :In t+pdata 
[4] 1~1 
[5] :While -tree[i;2]=o 
[6] (] por)~tree[l;2 3] 
[7] :If l=.data[;]] 
[8] ]~data[k;]]>por 
[9] :Else 
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[i0] ]÷-data[kill,pot 
[11] :EndIf 
[12] l+tree[l;4+]] 
[13] i~tree[;l]tl 
[14] :EndWhlle 
[15] z~z.tree[i:6] 
[16] :EndFor 

The zight argument is a tree object built using the 
function GrowTree. The function starts from a too t  
o f  the tree and selects a branch (child node) in lines [8] 
(continuous predictor) or in line [10] (categorical 
predictor). Then, it goes to a proper child node Oines 
[12-13]) and repeats the process. I t  stops when a 
terminal node is reached (line [5]) and, finally, the class 
label o f  this node is assigned to a result in line [15]. 
The  following examples illustrate the use o f  P r e d l  e t: 

5.I 0.5 (. 'A' ) 3 Predlct t 
1 

5.50.5 (.'D') 0.5 Predict t 
3 

data[;5] 
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3  

data Predict t 
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3  

data[;5]^.=data Predict t 
1 

Another  task o f  interest ~ the esfirnaUon o f  a mis- 
classification rate for a given tre~based modal. The 
foRowing simple function performs this ~sk: 

[0] n÷HErrors tree 
[1] tree+(tree[;2]=O)~tree 
[2] n~+/tree[;7] 

NErrors t 

We may he interested in extracting a rule or a set 
o f  rules ffrom a tree-based modeL For a g/yen terminal 
node we have art associated class label and a set o f  
conditions to reach this node from the root  o f  a tree. 
This may be expressed as a rule: 

C/a££ C IF Conditio, 1 . A N D . . . A N D  Condition N 

Functions G e t R u l e  and G e t I F  allow us to ex- 
tzact rules: 

[0] r~t GetRule n 
[1] r~#t GetIF n 
[2] ((pr)=r)~-3~(pr)=r 
[3] re'Class ',(vt[t[;1]tn;6]),' IF ',r 

[0] r~t GetIF n;l;x;v;o 
C1] r~'' 
[2] l ~ ( = [ z ] t [ ; ~  s ] ) , " n  
[3] ~(l=t[t[;l]tn;1])/O 
[g] (x v)÷t[[/i;2 3] 
[5] o~(I+2==V)='~>' '=~' 
[El X~('V',TX),O[i+>/i],TV 
[7] r~r,=x,' AMD' 
Is] r~r,t GetlF t i t / l ; 1 ]  

The left argument o f  the function G e t R u l e  is a 
tree object and the right argument is a number o f  a 
terminal node associated with the rule to he extracted. 
An illustration is shown below: 

t GetRule 6 
Class 3 IF ~'1>5.~5 AND F3= D C 

t GetRule 7 
Class 2 IF T/1>5.g5 AND V3~ D C 

In order to document  a classification tree model, it 
is useful to format a matrix o f  a tree. A P L  function 
Print does this job: 

[0] f~-Prlnt t;l 
[I] l~-[2el+t[ ;I] 
[2] f4-v"t [ ; I] 
[3] t[ ;Ilk-f,"' ) ' 
[L~] f~-wt,' *'[1+t[;2]=0] 
[5] f~-(-2xl)~((2=pf)+2x[/l)+[2]f 

Our  format is similar to the style used in S-PLUS 
and R. This means that we show a depth o f  each node 
and mark tern'final nodes with asterisks: 

P r i n t  t 
1) 1 5.q.5 2 3 1 1 0  

2 )  0 0 0 0 1  0 * 
3) 3 D C 6 7 2  5 

6 )  0 0 0 0 3 0 * 
7) 0 0 0 0 2 0 * 

Cost-Corn plexity Analysis 
Overfitting 

As it is well known, real data are always "noisy" 
and the ~str ibu~ons for the classes ovexlap. While we 
gzow a tree using a training set we may adapt a model 
too we1.[ to the particular training set we have. But this 
model may work badly when we use it for prediction 
on new data points. This problem is known as ovrrfit- 
~/ng. Let  us illustrate this problem using our artificial 
data set. I t  has four predictors, but  two of  them (X2 
and Xg) axe usdess (they were generated at zandom). 
The only two predictors Xf and Xj  perform perfect 
classification in accordance with the tree built above. 
It may he expressed 'with a set o f  3 simple zules: 

Cla, r,= 7 IF (X~.~ .4~ 

Clas~=2 IF  (X ,>5 .45)AND (X je  {A,B }) 

C/gr;=9 IF  (X,>5.4~ AND (X, ¢{D,C}) 

Let us now bring in errors or noise to our dam set: 

data2÷data 
data2 [ 1 ; 1]~-6, i 
data2[15;3]~-c, 'A' 

The first data point  belongs to cclass 1. After we 
changed the value o f  predictor Xf to 6.1 the first rule 

106 A l e x a n d e r  S k o m o r o k h o v  a n d  V l a d i m i r  K u t i n s k y  



Proceedings of the APL 2001 Conference 

does  no t  w o r k  and  this p o i n t  will be  misdassif ied.  F o r  
point 15 (Class 3) we  changed X ,  value from g)' to 
54: Rule 3 does  n o t  w o r k  n o w  and  this point will be 
misclassified to class 2. T h e  fol lowing calculation 
shows predic t ion  us ing the "o ld"  tree, bu t  the n e w  
data set indicates tha t  two errors  were  created: 

d a t a 2 [  ; 5 ] 
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 

data2 Predict t 
2 1 1 1 1 2 2 2 2 2 3 3 3 3 2  

data2[;5]~data2 Predict t 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Le t  us n o w  build the n e w  tree using the  new data: 

t2÷GrowTree data2 
NErrors t 2 

Print t 2  
1)  z 

2 )  0 
3 )  3 

S )  0 
7) 1 

1 ~ )  0 
15) 2 

30) 

60) 
61) 

31) 

5. %5 2 3 1 i0 
0 0 0 1 0 * 

D C 6 7 2 6 
0 0 0 3 0 * 
5.55 1% 15 2 2 

0 0 0 3 0 * 

2 30 31 2 1 

1 6,g5 6O 61 1 1 
0 0 0 0 1 0 * 
0 0 0 0 2 0 * 

0 0 0 0 2 0 * 

W e  m a y  see that  the n u m b e r  o f  errors is equal to 0 
again, bu t  at the cos t  o f  a doub ly  complex  tree (6 ter- 
rninal nodes  in compar i son  to  3 terminal  nodes  o f  an 
"o l d"  tree). E v e n  m o r e  i m p o r t a n t  is the fact  that  the  
/ . t rdevant  noisy  p red ic to r  Xz is n o w  invo lved  in the 
classification (node  15). L e t  us n o w  examine  an en- 
t i rdy  n e w  data point ,  which  fits to rule 2) and there-  
fore  has to be  pred ic ted  as a dass 2 instance: 

6.% 1.5 (,'A') 3.62 Predict t 
2 

6.% 1.5 (.'A') 3.E2 Predict t2 
1 

6.g 2.5 (,'A') 3.62 Predict t2 
2 

T h a t  is t rue i f  we use the initial tree m o d e /  t. Bu t  
this po in t  is misclassified with the  n e w  m o d e l  t 2, be- 
cause the noisy  p red ic to r  X2 has a value o f  1.5 and  the 
i r r d e v a n t  rule at n o d e  15 is fired. As p red ic to r  X2 is a 
noisy  one  it m a y  take any value. T h e  third express ion  
o f  the example  above  shows that  the  classification is 
changed  i f  X2=2.5. I t  really looks  like a r a n d o m  game 
and  we  have to  conc lude  that  the  t ree  moda l  t 2 is 
overfi t ted.  

Cutting the tree 
At  this stage, a ques t ion  arises, " H o w  do we cope  

wi th  the p r o b l e m  o f  overf i t t ing?" O n e  way is to stop a 
tree growing be fo re  ir reaches its maximal  size. T h e  

usual  s t o p  criteria are a smal l  n u m b e r  off po in t s  at 
so m e  n o d e  o r  a small r educ t ion  in dev iance . .Ano the r  
ap p ro ach  is to  r e m o v e  unnecessary" nodes  affter a t ree 
o f  maximal  size has b een  built. W e  m a y  limit the n u m -  
ber  o f  rules pe r  cclass o r  the n u m b e r  o f  predic tors  used  
for  classification. S o m e  insights o f  that  kind may  c o m e  
f r o m  prev ious  research,  diagnost ic  i n fo rma t ion  f r o m  
other analyses, or  even  intuit ion.  

In  the  nex t  sect ion we  cons ider  using spec/al for- 
mal  p rocedures  fo r  select ing the " 'fight-sized" tree, 
k n o w n  as co;t-compkxi~ypruning and  cross-validation. H e r e  
we discuss a m e t h o d  and  a func t ion  to reduce  a tree 
size to  a given numbex  o f  nodes .  

T h e  raw resul t  o f  the  G r o v T r e e  funct ion  is a 
maximal  chss i f ica t ion tree. N o w  we wan t  to get  a 
smaller subt ree  wi th  fewer  nodes  f r o m  the maximal  
tree. T h e  p r o b l e m  is that  there  can be  m a n y  di f ferent  
trees o f  the same size. T h e s e  trees o f  the same size 
m ay  differ  in the p r o p o r t i o n  o f  misdass i f ied  cases. 
T h e  goal is to  select  the  best  subtree  o f  a given size. 

T h e  func t ion  C u t takes the  tree o f  maximal  size 
as its r ight  a rgumen t  and  searches fo r  the tree o f  size n 
(left a rgument)  such tha t  its cost  (misdassif icat ion 
rate) is the  lowes t  a m o n g  aU trees o f  the same size. 

[ o ]  z~-n C u t  t r e e ; c n t ; m e m o ; t m p ; i ; ] ; k  
; r o w ; e  

[1] n~nL+/tree[;2]=o 
[2] :If n=l 
[3] z~tree[.1;] 
[%] z[l;2 3 g 5]~0 
[5] :Return 
[6] :EndIf 
[ 7 ]  z÷O 7po 
[ 8 ]  c n t ÷ O  • memo÷O 3po  • k ~ l  
[ 9 ]  : W h i l e  c n t s n  
[10] z÷z, E1]tree[k;] 
[11] :For i :In tree[k;% 5] 
[12] J~tree[;l]Li 
[13] row~tree[];] 
[1%] :If row[2]=o 
[15] z÷z,[1]row 
[16] cnt~cnt+l 
[17] :Else 
[18] e÷tree[;1]trow[~ 5] 
[19] e÷ruw[7]-+/tree[e;7] 
[20] memo~memo,[1]i e ] 
[21] :EndIf 
[22] :EndFor 
[23] :If n=cnt+÷pmemo 
[2%] tmp~tree[memo[;3];] 
[25] imp[;2 3 % 5]~0 
[26] z~z.[1]tmp 
[27] :Return 
[28] :EndIf 
[2S] memo~memo[~memo[;2];] 
[ 3 0 ]  k~l=memo[;3] 
[31] memo~l¢[1]memo 
[ 3 2 ]  :EndWhlle 
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The algorithm for selecting a smallex size tree with 
minimal costs is the following', having at a certain stage 
a tree of size ,, we choose which of (/:tO nodes (sup- 
pose they are not te.rmJ.ual nodes yet) to split next in 
order to get a tree o f  size (tl+l). The choice is in favor 
o f  that node that, after having been split, gives the 
maximum decrease in deviance. Starting from the root  
node  (size = 1), the function examines all candidate 
nodes grown fill the moment .  I f  they are not  terminal 
nodes (fine [15]) it calculates the decrease in deviance 
for each o f  them (fine [20]) and stores the results in a 
temporary variable memo (line [21]). When all nodes 
are examined, the function ranks the order o f  the 
matrix memo and picks the node with the maximum 
value o f  decrease in deviance (line [32]). The process 
continues till the desired tree size n (left argument) is 
reached (line [24]). Here, cn  t equals to the number  o f  
terminal nodes obtained to this momen t  and ÷ pmemo 
equals to the number  o f  candidate nodes. Once no 
further split is needed, the nodes in memo are re- 
garded as terminal ones 0ine [26]) and the process 
ends. The result o f  the function is the tree o f  size n 
with the lowest cost. 

Print 3 Cut t2 
1) 1 5.q.5 2 3 1 i0 

2) 0 0 0 0 1 0 * 
3) 3 D C 672 6 

6 )  0 0 0 0 3  0 * 
7) 0 0 0 0 2 2 * 

,An example shown above demonstrates that the 
reduced tree t2 fits exactly to a tree t, built on 
" c lean"  data before errors were insetted. But we have 
now two mischssified points at node 7. This is 
unavoidable, because the noisy data does not  fit the 
ideal rules. 

Pruning the t r e e  
In the previous section we learned how to find 

trees smaller than the maximal tree size. N o w  we have 
to srdp of f  the least important  splits on a regular basis. 
T h i s  process is called aoxt-c0tnp/e~c/~,p~nin& 

Let us denote the cost o f  the subttee T" as C(T'). 
We will estimate a cost as the total misclassification 
rate of a tree. The size of a tree is equal to the number 

of terminal nodes and is deno ted as .r/~e(T~. Then the 
cost-complexity measure is given by: 

C k (T ' )  = C ( T ' )  + k x s i ze (T ' ) ,  

where k is the complexity parameter. 

Let us assign the initial value to k as zero. N o w  for 
every tree (inducUng the first, cont ,  ining only the root 
node), compute the value of the filnetJon above. In- 
crease the complexity parameter continuously until the 

value o f  the function for the largest tree exceeds the 
value o f  the function for a smaller-sized tree. Take the 
smaller-sized tree to be the new largest tree and con- 
dnue increasLng the complexity parameter. Stop the 
process when  the root  node  becomes the largest tree. 

Thus, we get a sequence of  largest trees. The se- 
quence has a number of interesting properties. It is 
nested, i.e. every tree contains all the nodes of the 
next smaller tree in the sequence. I.uitiaUy, many nodes 
are pruned going from one tree to the next smaller 
trec in the sequence, but fewer nodes tend to be 

pruned as the root node is approached. Second, for 
every tree in the sequence, there is no other tree of the 
same size with lower cost. And finally, this is the very 
sequence of  trees out o f  which we will choose the 
"t ight" tree size at the stage o f  cross validation. 

To perform the task o f  pruning a classification 
tree we have a function P r u n e  which takes a tree to 
prune as its right argument. The  left optional argument 
s t stands for "'step" and indicates the value o f  in- 
crease o f  the complexity parameter k, line [15]. 

[o]z÷{~t}Prune tree;prlme;min;max;k;sizea 
[i] ,(O=DNC'st')/'st~-0.1' 
[2] max4-+/tree[;2]=o 
[3] sizes~-tmax 
[q.] prime~-slzes Cut"ctree 
[ 5 ] prlme÷(NErrors"prime). [ i. 5 ]sizes 
[6] .k , -o 
[7]  z~-~O,-l÷[1]prlme 
[8] :WfiIJe max,1 
[ 9 ] min~-prlme [ ; 1 ] + k x s l z e s  
[i0] min~-mlnt [/min 
[11] :If mln<max 
[ 12 ] max~-mln 
[13] z~-z,[l]max,prlme[max;l],k 
fig] :EndIf 
[15] k~-k+st 
[16] :EndWhlle 

In the line [4] we call the function Cut to search 
for trees with minimal costs for all tree sizes. This tree 
sequence is used later 0rues [6-16]) to produce the 
final sequence of the cost-complexity optimal trees. 
The resuh is the 3-columns mat r i x .  The first column 
contains tree sizes. The  second column contains the 
corresponding costs and the third column contains the 
corresponding values o f  complexity parameter I¢: 

Prune t2 
6 0 0 
4 1 0 . 5  
3 2 1 
1 10 q. 
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C r o s s - v a l i d a U o n  a n d  c h o o s i n g  t h e  f i n a l  
t r e e  

Cross-validation is a general statistical approach to 
select a model o f  optimal complexity. The main idea is 
to separate datasets used for model  learning and test- 
ing. The quality o f  fitting on a training set increases 
with the increase in model complexity. That  is not  true 
for independent data of  a testing set. Usually, the error 
rate o f  prediction reaches a small value at some "rea- 
sonable" complexity level and then decreases very 
slowly or even increases. Thus, we may select the sim- 
plest model with an acceptable error rate. 

The cost-complexity prmdng considered in the 
previous section g/yes us the Iaght sequence o f  txees, 
ordered by complexity. We may now calculate the 
tmisdassificat/on rate for each tree of  this sequence on 
an independent dataset and select the optimal one. 

In the present work we will use so-called V ~ / d  
Cro.r.r-vah'datttb,. This type of cross-validation is useful 
when no separate test sample is available and the 
learning sample is too small to have the test sample 
taken from it. A specified parameter, V, detcrrnines 
the number of random subsarnplcs, as equal in size as 
possible, that are formed from the learning sample. 
The classification tree of the specified size is com- 
puted V times, each tJ.mc leaving out one of the sub- 
samples from the computations. This subsample is 
used as a test sample for cross-validation. So that each 
subsample is used (V- I) times in the learning sample 
and just once in the test sample. The misdassification 
rates computed for each of the V test samples are 
then averaged and used for art optimal tree selection. 

We use a function, Samples, to generate ran- 
dom subsamples, which we need to perform the cross- 
validation procedure. I t  returns n (left argument) ran- 
dora subsamples o f  about the same size as its result. 
The right argument s i z e  indicates the size of  the 
main sample. 

[o] z~-n Samples size;p;r 
[1] z~-size ?size 
[ 2 ]  p4-Lsize+n 
[ S ] r÷si ze -n *p 
[4] p÷(npp)+n¢rpl 
[5 ] p4-epp tn 
[ 6 ] z÷p=z 

Here is an example o f  its work: 
dlsp 2 Samples 10 

,-~ . . . . . . . . . . . . . . . . . . . . . . . . .  . 

I .~ ......... . .+ ........ . I 
I 17 s l o  s 11  16 2 q- S 3 l  I 
I . . . . . . . . . . . . . . . . . . . . . . .  I 
I i i  ~ . . . . . . . . . . . . . . . . . . . . . . . . .  I 

The next function C r o s s V a l i d a t e  performs V- 
fold Cross-validation. Its left argument n is the V 
parameter and the right argument is the tree object. 

[0] z~-n CrossValidate tree;data;e;ee 
;m ; rnd ;s ;  sz; t ; test ; train 

[1] (tree data)q-tree 
[2] sz~,l÷[2]Prune tree 
[3] rnd÷n Samples+pdata 
[~] z4-0 3 p O  
[5] :For n :In sz 
[5] e ~ - t o  
[7] :For m :In rnd 
[8] test÷data[m;] 
[9] train÷data[ernd-=m; ] 
[10] t÷GrowTree train 
[11] t÷n Cut t 
[12] ee~-+/test[j2=ptest]~test Predict t 
[13] e÷e,ee÷+ptest 
[1W] :EndFor 
[15] m~-+/e+oe 
[16] s~-+/(e-m)*2 
[17] s~-(s+-l+pe)*o. 5 
[16] z~-z.[1]n,m,s 
[19] :EndFor 

First, the function prunes the tree (line [2]). Then, 
for every tree in the obtained sequence (line [5]), the 
function grows a chssification tree n times (line [7]). 
Every time a new training set is used (line [10]). Pre- 
dict/on accuracy is estimated on a new test set (line 
[12]). In lines [15-17], a mean value and a standard 
deviation o f  eetxors are calculated and passed to the 
result (line [18]). The final result is the matrix whose 
columns contain tree sizes, corresponding cross- 
validation costs and standard e.a:ors accordingly. 

Let us apply function CrossValidate to a 
tree created with use o f  noisy data: 

3 CrossValidate t2 data2 
1 O.S 0 
3 0 . 6  0 . 2  
q. 0 . 6 6 6 6 6 6 6 6 6 7  0 . 3 0 5 5 0 5 0 q . 6 3  
6 0 . 7 3 3 3 3 3 3 3 3 3  0 . 2 3 0 9 ~ 0 1 0 7 7  

Results are shown in Fig.2, where we see the min- 
imum misdassification rate for an optimal size-3 tree. 

C r o s s - v a l i d a t i o n  

, .  0 . 9  

0 .8  

i °-, 

D. 0 . 5  

1 3 4 6 

T r e e  s i z e  

Figure  2: Cross validxtion results for artifici~ data 
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Thus, the automatic selection o f  an optimal size o f  
a tree allows us to avoid the loss in the predictive ac- 
curacy produced by an effect o f  "overfitting". 

Diagnostic Data Mining 
As a Data  Mining too l  tree-based modeling is in- 

creasingly used for surnmariT.ing large multivariate data 
sets. In this paper we demonstrate possibilities o f  this 
technique in application to monitoring the vibration o f  
mechanical equipment  in Nuclear Power  Plants 
(NPP). The basic information unit o f  vibration is the 
spectrum of  a signal measured by v/brarion sensors 
placed on mechanical equ/pment. Changes in vibration 
behavior and characteristics o f  a spectrum indicate 
mechanical changes in the moni tored equipment. The 
data used in the paper were measured at a Nuclear 
Power  Plant m Novovoronehz ,  Russia. We  discussed 
the application m these data o f  Pattern Recognition 
techniques in the papers [6, 7]. 

Problem description 
A typical N P P  vibration monitoring system uses 

many sensors, performs measurements on a regular 
basis, and calculates high-resolution spectra. In our 
system there are 32 vibration sensors and each spec- 
trum is estimated for 400 frequencies in the range 0- 
50Hz. The database size is growing rapidly and there 
is the need for an exploratory technique for uncover- 
ing structure in the data. 

The  system sensors and measured spectra differ in 
many aspects: 

• Sensor type and measured signal may be pressure, 
absolute or relative displacement 

• Sensor location, like steam generator or  main 
coolant pump,  and different coolant loops 

• Measurement  direction, as across or along a pipe- 
line 

• Displacement  direction, as vertical movement  o f  a 
reactor or steam generator movement  to and from 
a r e a c t o r  

.All the above factors and any combination o f  
them may be  used for data categorization, such as 

• Spectra o f  steam generator or coolant pump 
vibrations 

• Spectra o f  steam generator vibrations for different 
coolant loops 

• Spectra of  absolute and relative displacements 

The  main dassificarion o f  interest is ff a spectrum 
from a particular sensor belongs to a normal or  ab- 
normal class o f  vibrations. But  discovering the com- 
m o n  features and differences for other categories, as 
we menrioned above, may give very important  infor- 
marion about  the system. 

We  successfully applied tree-based technique to a 
concise description o f  any reasonable category of  data 
and Large database summarization. Interesting patterns 
have been uncovered  and used for malfunction diag- 
nosrics. In th/s paper we  briefly consider only two 
examples o f  this research: 

1. Classificarion o f  vibration spectra o f  steam gen- 
erators or coolant pumps  

2. Classification o f  vibration spectra o f  steam gen- 
erators of  different coolant loops 

For  graphic representation o f  data, we used our 
implementation o f  AP207 emulator for Dyalog APL 
[5]. In this paper we  also described the syntax o f  asso- 
da ted  utilities. 

SG-MP Classification 
In  this example we are interested in the differ- 

ences between spectra o f  a Steam Generator  (SG) and 
the Main Coolant Pump (MP) vibrations. A set o f  
1098 spectra o f  both  classes were divided into a train- 
ing and testing sets: 

p s  
1 0 9 8  tl.OO 

pc.Z 
1 0 9 B  

Un ique  c1 
1 2 

ptrain 
5 0 0  4 0 1  

ptesC 
5 9 8  4.01. 

The tree-based model  was built using only data o f  
the t ~ . i n g  set: 

t÷GrowTree train 
NErrorm t 

o 

The resuhing tree is shown in Fig.3. This model  
allows the right classification, but  looks too compli- 
cated (11 terminal nodes). Using the function C u t  we  
crested a sequence o f  roo ted  subtrees of  sizes from 1 
to 8. Then we calculated the misclassifcarion rate 
using each subtree for prediction on independent  test 
data. 

p ~ ( c t e s t [ ;  t ~ o o ] )  Predict"(ta)Cut"ct 
(,s),[.5]+/"(ctest[;goz])-p 

1 2 3 q- 5 6 7 S 
2 8 2  8s  39  38  36  36  2 3  2 2  
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Figure  3: Full Tree for SG-MP Classification 

This model  gives correct classification, but  looks 
too complicated (11 leaf nodes). Using the function 
CCu t we created a sequence o f  subtrees o f  sizes 1 to 8. 
Then we calculated the misclassification rate using 
each subttee for prediction on independent  test data. 

p~-(ctest[; t q - O O ] )  P r e d i c t " ( t s ) C u t " = t  
( t S ) ,  [.5]+/"(=testE;~o1])~p 

1 2 3, ~ 5 6 7 8 
2 8 2  88  3,9 3,8 36  36  23  22  

This result allowed us to select an optima/ tree 
with only 3 terminal nodes: 

t 3 ~ - 3  tr. Cut t 
Print t 3  

1 )  1 9 6  0 , 0 ~ 8 1 6 2 6 3 q . 5 2  2 3 1 2 4 2  
2 )  6 9  0 . 0 6 9 1 2 2 9 4 - 2 8 4  q. 5 1 SO 
3 )  0 0 0 0 2  ~ * 

4)  0 0 0 0 1 1 6  * 
5 )  0 0 0 0 2  0 * 
lOOu(+/cl~s Predict t3')+pcl 

5 . 3 ' 7 7 3 4 0 6 1 9  3 

As it is shown above, the prediction error o f  an 
opt ima/ t ree  is about  5.4%. It is more  than acceptable 
for our g o a / o f  dataset summarization. And  ordy 2 o f  
400 predictors (spectrum values at frequendes 69 and 
196) have been used for classification. The foUowing 
simple tulles describe the main structure in data: 

=(¢t3,) G e t R u l e " 3 ,  4 5 
C l a s s  2 I F  V l S S > 0 . 0 q . S  
C l a s ~  I IF V z s s s o . o ~ s  AND Y69sO.069 
Class 2 IF I , " 1 9 6 s o . o ~ . s  AND V 6 9 > 0 . 0 6 9  

Let  us consider median spectra o f  each c/ass for 
the above ru/es interpretation: 

med÷{o.s~+/~,[(,t~)[fo.5~,o 1 + p s i ] }  
m l ÷ m e d " c  [ 13 ( c l  =1 )~sl 
m2~-med"=[1] (cl=2)~sl 

plot (t400) ml m2 
0.I~ 

0..I 

SEe 

O~ 

B~ 

Figure  4: Median spectra for classes SG and MP 

T w o  vextical lines in the Fig.4 indicate ffrequenc/es 
used in the classificat/on tree. It  may be seen, f o r / n -  
stance, that c/ass MP has a higher l evd  for a large peak 
at frequency 196. This is the main frequency of  a 
pump wheel rotat/on. A sensor located on the coolant 
pump detects the associated vibration more  easily. 

Different coolant loops classification 
Let  us n o w  find rules to distinguish spectra from 

sensors located at the diffezent coolant loops. There 
are 6 coolant loops at the reactor we work  with. In 
general, there should not  be any difference between 
vibration o f  the mechanical equipment o f  the same 
type, but  located at different coolant loops. Therefore, 
we expect a large tree with only a few objects at each 
tecmina/node. Let  us check if  that is the case. We  used 
for constructing the tree a dataset o f  574 spectra from 
6 classes: 

p~ 
5774 40o 

p c l  
5 7 4  

Unique cJ 
i 2 3 4 5 6 

+ / ( ~ s ) - . = c l  
1 1 7  1077 66 9 3  ¢ 2 5  66  

The resulting tree is a complicated one: 

t ~ - G r o w T r e e  s ,  cJ 
Print t 

I) 71  0 . 0 6 3 2 6 2 3 , 2 2 5 1  2 3 5 q-49 
2 )  3,99 0 . 0 q . 0 4 6 2 9 9 4 1 6  4 5 1 2q-7 

LI-) 3,5 0 . 0 6 9 1 3 , 5  8 9 2 76  
8 )  6 0  0 . 0 5 3 0 5 3 1 9 4 1  1 6  1 7  3 1 0  

1 6 )  0 0 0 0 3, 0 * 

17) g 0 . 0 5 2 9 4 1 0 6 6  3tl. 3 5  ~ 
3q.)  0 0 0 0 q- 0 * 
3 5 )  1 0 . 0 8 7 q - q - 9 % 6 5  7 0  771 6 2 

7 0 )  0 0 0 0 6 0 * 
71) 1 0.i01~2617 142 143 1 1 

1 4 2 )  0 0 0 O 5 O * 
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P r o c e e d i n g s  o f  t h e  APL 2 0 0 1  C o n f e r e n c e  

l q - 3 )  0 0 0 0 1 0 * 
9 )  0 0 0 0 2 0 * 

5 )  91 O.06q-62t l .  391q-9 10 11 1 65 
1 0 )  10 0 . 0 7 9 6 3 5 2 9 8 5 7  20 21 6 1 

2 0 )  0 0 0 0 5 0 * 
2 1 )  0 0 0 0 6 0 * 

1 1 )  0 0 0 0 1 0 * 
3 )  8q- 0 . 0 5 7 5 2 8 1 0 1 q .  6 7 5 87 

6 )  0 0 0 0 it 0 * 
7 )  0 o 0 0 5 o * 

We used the whole dataset for leam/ng. Let  us ap- 
p ly  the cross validation p~ocedute to define the right 
size o f  a tree: 

+ e v e 5  C r o s s V a l i d a t e  t ( s , c l )  
i 0 . 8 0 1 3 9 2 ~ 0 6 7  0 . 0 3 7 9 7 8 5 1 8 9 3  
2 0 . 8 0 6 3 ~ 6 3 0 0 5  0 . 0 8 0 1 2 7 3 6 4 6 7  
3 0 . ~ 0 5 9 3 ~ 0 1 2  0 . 0 5 1 7 ~ 9 3 2 3 9 6  
g 0 . 2 5 9 8 7 2 8 ~ 5 2  0 . 0 1 ~ 0 5 1 4 5 3  
5 0 . 1 8 2 0 5 9 ~ 9 6 6  0 . 0 2 9 6 3 7 7 7 5 6 2  
6 0 . 0 3 ; 8 5 6 8 8 8 3 5  0 . 0 1 7 ~ 3 9 7 ; 6 7 9  
7 0 . 0 2 6 1 3 2 7 2 3 1 1  0 . 0 1 5 0 6 1 6 5 9 0 ~  
8 0.02091533181 0 . 0 1 ~ 5 7 1 ~ 6 7 1 6  

11 0 . 0 1 7 4 3 7 0 7 0 9 g  0 . 0 1 7 9 2 0 1 6 5 5 6  
0 I plot 1 2/c[l]cv[;l 2] 

.* 

\ 

~ - - ' - - ~ - "  ' I I 
° ~ ,~ ] .~ J, ,L 

F igu re  S. Cross validation results 

We see that the misclassification rate almost stops 
decreasing after tree size reaches 6. The tree of  that 
reduced size is shown in Figure 6 (a plot was created 
in the R statistical system): 

V 7 1  < O.,OO321J23 

V31111B K O.g14041S3 

VSB < O.L,  .1 SB7 VBI  < 0 .L8 4 .  244 

[ I I I 
L~ L2 LI! L I 

L4 LB 

F i g u r e  6: Reduced tree structure 

This tree is unexpectedly simple and accurate. Er- 
ror rate is only about  2%. 

t 6 ÷ 6  C u t  t 
l O O ~ ( J V E r r o r s  t 6 ) ÷ ÷ p E  

1 . 9 1 6 3 7 8 3 0 7  

O t h e r  news is even m o t e  imports.hr.  The  fit:st spl i t  
divides all. data into two groups o f  coolant loops 
{1,2,3,6} at the left branch and {4,5} at the right one. 

Let  us have a look at median spectra of  these two 
groups to interpret the observed dassificat/on: 

ml~-med"c[1](cl(1 2 3 6)~s 
m2~-med"=[1](cJe4 5)~s 
p l o t  ( t ~ , O 0 )  ml m2 

u| 

QJm 

n~  

uJ~ 

" ¢ ,,t,, ,1. ~ J,, =J. J. 2., 

Figu re  7: Median spectra for two  groups of  coot- 
ant  loops 

The  vertical line in Figure 7 indicates the root  split 
~equency. I t  may be seen that spectra at loops 4 and 5 
have a peak at frequency 71 and the other loops have s 
spectrum dip at the same frequency. To see how 
significant this difference is, let us use a Box-Whisker 
plot for two subsets o f  the predictor 71 values: 

x14-(clel 2 3 6)~s[;71] 
x2~-(cl(g 5)~s[ ;71] 
bw_plot xl x2 

Om 

OIB,g 

.', ! ,L, -i ,', :l 

F i g u r e  8: B o x - W h i s k e r  p l o t  fo r  two  groups o f  
coolant  loops 

The difference is h/ghly significant and therefore 
we may conclude that the important  distinctive feature 
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of  the vibration characteristics o f  coolant loops 4 and 
5 has been uncovered. 

Conclusion 
A popular Data Mining technique known as Clas- 

sification Trees has been considered in detail. ALl ma- 
jor parts o f  the technique starting from split selection 
and growing the tree and finishing with tree structure 
optimization were discussed and illustrated by numeric 
examples in APL. 

It  has been shown that Dyalog APL allows effec- 
tive implementation o f  the software to build tree- 
based models and m use them for prediction. Use o f  
control structures has simplified the code and hn- 
proved readability significantly. The functions P c  i n t 
and G e t R u l e  may be mentioned as a good 
illustration of  APL's power in array processing. The 
use of  dyn~mic functions has been seen as veery 
convenient for explomto~ calculations in the APL 
session. 

A case study of  summ~riT.ing o f  large datasets and 
uncovering hidden patterns in the area o f  Nuclear 
Power Plant vibration monitoring has been discussed 
and illustrated by" real life examples. 

As future work directions, we would like to 
mention: 

• Implementation in APL o f  Regression Trees 
technique 

• Development o f  utilities for graphical representa- 
tion o f  tree-based models 

• Modifying existing software to allow direct build- 
ing o f  a tree with data stored in a rehfional 
database. 
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