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p ROGRAMMING LANGUAGES are introduced briefly and a 
distinction is made between conventional and array lan- 
guages. The languageJ is given as a modern exemplar of 

array languages and is illustrated with a few simple examples. 
Some comments are given on the teaching of languages and on 
the history of computing. 

A much longer discussion of y from which most of the 
material in this paper has been taken may be found in 
Mostly J, which is available at 

www. ca. ualberta, ca/-smiUie/fJpage.htm 

Introduction 
"If you cannot--in the long run--tell everyone what you have 
been doing, your doing has been worthless." 

So said the physicist and Nobel laureate Erwin SchrSdinger 
in a series of public lectures pubfished in the early 1950s as 
Science and Humanism. His remarks may be even more relevant 
today when universities emphasize the acquisition ofnew knowl- 
edge and its dissemination in scholarly publications, at times so 
it seems to the exclusion of the interests of those wishing some 
understanding of the sciences as part of their general education. 

It is with thoughts like this in mind that I attempt to explain 
exactly what it is I have been doing for so many years. I have 
spent almost all of my professional life--very agreeably most of 
the time--programming, teaching programming, and writing 
about programming. Although much of my work has been of a 
mathematical or statistical nature and often has involved the use 
ofmathemafical notation and mathematical and statistical tech- 
niques, much of it is in principle rather simple and within the 
grasp of any literate person. I have found my work to be intensely 
interesting, and it is just conceivable that there are those who 
may find some interest in a brief description that is not burdened 
with either technical detail or mathematical notation. 

Also I beheve we have an obligation to explain to people how 
we spend our professional lives. We owe this to our family and 
friends, whom we on occasion may neglect when we become 
preoccupied with our work. We also have an obfigafion to others 
who support us directly and indirectly and who may often 
wonder what they are getting in return. 

We shall begin with a look at some of the programming 
languages I have used and make the distinction between what I 
term "conventional" and "array" languages and emphasize the 

differences between them by a simple analogy of counting the 
number of good apples in a box of apples. We shall then intro- 
duce the array language J by means of a simple example of 
analyzing a short list of book prices. The use of J will be filrther 
illustrated by a discussion of a few problems with which I have 
been concerned during my career. This discussion of J con- 

" dudes with a summary of the J operations we have used in the 
previous examples. We then return to programming languages 
in general with some remarks on both the teaching of program- 
ming languages and naturallanguages and also the importance of 
keeping an appropriate historical prospective in one's work. We 
conclude with a few remarks on the place of array languages in 
today's programming environment. 

Persons wishing to learn more aboutJ than is given in this 
paper are encouraged to visit the Iverson Software Inc. Web site 
at "www.jsoftware.com" for futher information, tutorials and 
links to related sites. 

Programming Languages 
Conventional languages 
The firs t computer I worked with was the National Cash Register 
102A which, as were all computers in the 1950s, programmed in 
machine-language. A pro gram consis ted of a sequence of ins true- 
fions written in numerical form, each specifying the operation 
and the addresses (locations) in memory of the numbers to be 
operated on and the address of the result. For example, the 
instruction 

35 2001 1025 1050 
meant "add the number in location 2001 to the number in loca- 
tion 1025 and put the sum in location 1050." Data entered into 
the computer had to be converted to binary, the arithmetic 
performed in binary, and the final results converted to decimal 
before being printed. Moreover, the programmer had to expfie- 
itly keep track of the size of all numbers throughout a computa- 
tion to ensure that they, or at least their binary equivalents, 
always remained less than unity in absolute value. (A later 
version of the 102A, the 102D, used decimal arithmetic which 
removed the problems of conversion between decimal and 
binary.) Thus programs for what we would consider today very 
simple or even trivial calculations could be quite lengthy. For 
example, one program for calculating the average of a list of 
numbers required about four dozen instructions. 

To simpfify the programming task, most computers were 
soon provided with programs which allowed the programmer to 
use a somewhat simpler language than machine-language which 
would be interpreted one command at a time as sequences of 
machine-language instructions. An example was Simple Code for 
the Stantec Zebra, a computer installed at the Suflield Experi- 
mental Station in Alberta and which I used for the Canada 
Department of Agriculture in Lethbridge, Alberta. Programming 
in Simple Code was still a most demanding task but it was very 
much easier than programming the Stantec Zebra in machine- 
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language with its repertoire of, theoretically at least, several 
million different instructions. 

A breakthrough in programming came in the late 1950s with 
the development by the International Business Machines 
Corporation of FOKTRAN, for Formula Translating System, 
which allowed the programmer to write programs in an 
algebraic-like language. The program would be first translated in 
its entirety to machine-language and then executed. Since its 
release in 1957 FORTRAN has been almost continuously 
developed--the latest version is FORTRAN90--and has had a 
profound effect on the the development of programming 
languages and their teaching. 

The appearance of FORTRAN made the use of computers 
feasible for people who did not wish to become full-time pro- 
grammers at the expense of their chosen professions. Courses in 
FORTRAN were soon established at universities and colleges for 
students in science and engineering. In the early 1970s at the 
University of Alberta FORTRAN was replaced briefly with 
ALGOLW and then with Pascal as the first language for comput- 
ing science students. Pascal has just been replaced with Java in 
most introductory courses. Although there are important differ- 
ences between these languages, they are sufficiently similar that 
students experience the same problems when learning to use 
them. 

BASIC, Beginner's AU-Purpose Symbolic Instruction Code, 
was developed at Dartmouth College, a small liberal arts college 
in New Hampshire, as a simple alternative to FORTRAN for 
undergraduate students, most of whom were in the social 
sciences and the humanities. The first BASIC program was run 
on May 1, 1964 at four o'clock in the morning. It was equivalent 
to the evaluation of the arithmetic expression (7 + 8 ) + 3. 
The language was an immediate success and has become 
probably the most popular and widely used language in the 
world. It received only limited use at the University of Alberta 
until the mid-1980s when it became the first language for 
students in Arts and Education. Again, in spite of important 
differences with the languages already mentioned, students 
encountered the same problems in learning it as with the other 
languages. 

I believe that FORTRAN, ALGOLW, Pascal and BASIC-- 
and indeed many other languages--are sufficiently similar to be 
grouped in a class which I call "conventional" languages. In spite 
of their many differences, they all have the characteristic that the 
basic unit is, for numerical work at least, the individual number, 
and any computation must be broken down into sequences of 
operations on these units. For example, the procedure to finding 
the sum of a list of numbers would be analogous to that used 
manually with a pocket calculator: an accumulating register is 
first cleared, and then the numbers are added one at a time into 
this register until all of the numbers have been treated. Ifthe sum 
were required for a table of numbers representing, say, expendi- 
tures in each of several categories for each month of the year, 
then the numbers would have to be added row-by-row and 

colmnn-by-column. Thus programs for computations which we 
can either visualize or express verbally in very shnple terms can 
result in very complicated programs which are tedious to con- 
struct and prone to error. 

On the other hand, in array languages arithmetic and logical 
operations may he applied not only to individual numbers but to 
lists, tables, and structures of arbitrary dimension. Thus proce- 
dures which may become quite complicated with conventional 
languages can he expressed very simply with array languages. We 
turn to a brief overview of some of these languages in the next 
section. 

Array languages 
The first array langauge I used was APL, for A Programming 
Language, originally conceived by Kenneth Iverson while a 
graduate student at Harvard University in the early 1950s. It was 
intended as an alternative to conventional mathematical notation 
for the description of algorithms arising in problems of sorting, 
searching and optimization. After leaving Harvard, Iverson 
joined IBM where APL was first implemented on a computer in 
1966. Since then there have been several major implementations, 
the current one being designated APL2. 

The principles underlying the design of APL have been sim- 
plicity, brevity, uniformity and generality. While the conventions 
of mathematical notation have been respected, these principles 
have always been given precedence. The data objects in APL are 
one-dimensional fists, two-dimensional tables, and in general 
rectangular arrays of arbitrary dimension. In addition to the usual 
elementary arithmetical operations of addition, subtraction, 
multiplication, division and raising to a power, there is a large 
number of additional operations which are defined for arrays as 
well as for individual numbers. For example, ffwe have a list of 
unit prices and a list of quantifies of each item purchased, then a 
single multiplication will give a list of the total amount spent for 
each item, one addition will give the total amount spent, and ff 
there is a sales tax one more multiplication will give the total cost 
including tax. 

Nial, Nested Interactive Array Language, combines concepts 
from APL and other languages within the framework of a 
mathematical model called array theory. It was developed over 
many years by Trenchard More of the IBM Cambridge Scientific 
Center. The name comes from the Old Norse Icelandic name 
.~aL The data objects in Nial are arrays whose items may be 
arrays, whose items in turn may be arrays, and so on. The basic 
items of arrays may be any of several types such as integers, 
decimal numbers, literal characters, etc., and different types may 
occur in the same array. As with APL, there is a large number of 
primitive array operations available and additional operators and 
programs may be defined. 

Upon retirement about ten years ago, Kenneth Iverson began 
work on a "modern dialect" of APL that would provide the 
simplicity and generality of APL while at the same time be readily 
and inexpensively available on a variety of computers and 
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capable of being printed on standard printers. The language was 
given the name J by Roger Hui--who along with Ken, his son 
Eric, and Chris Burke have been its principal developers-- 
because, he said, "the letter 'J' is easy to type." (We might note 
that the nameJ precedes the naming of Microsoft's Java develop- 
ment tool as Visual J++.) 

There appear to be no data readily available on either the use 
ofarraylanguages relative to other programming languages or the 
relative use ofAPL, Nial andJ. APL has been used extensively in 
a wide range of scientific and commercial applications and has 
had a group of devoted advocates in many universities. It 
continues to be used extensively and is supported by IBM and 
other major companies. Nial had a small but enthusiastic group 
of supporters, mosdy academics, in the 1980s, but appears to be 
little used now. Interest inJ has grown in the last few years, and 
should continue to grow as the language develops. 

Counting apples 
An excellent example of the difference between conventional lan- 
guages and array languages has been given by Frederick Brooks 
of the University of North Carolina. In his example, which we 
have modified somewhat, we are to give a list of instructions for 
counting the number of good apples in a box of apples. We shall 
give the instructions first in the style they would be given in a 
conventional language and then in the style of an array language. 

The first instruction in the conventional programming style 
would be to get a blank piece ofpaper for keeping a tally of the 
good apples as we come across them in the box. The next 
instruction would he to pick an apple from the box, and examine 
it for goodness according to some criterion. If it is a good apple, 
then put a mark on the taUy paper. Then pick a second apple, 
examine it for goodness, and if it is a good apple put another tally 
mark on the paper. Then pick another apple , . . . .  Continue this 
procedure of examining the apples one by one until all of the 
apples in the box have been examined and the occurrence of the 
good apples recorded. The number of good apples will be given 
by adding the number of marks on the tally sheet. 

On the other hand, the instructions given in the style of an 
array language would consist of a simple statement such as "Mark 
all of the good apples in the box and then add up the marks." It 
would be assumed that the person to whom the instructions were 
given would be able to work out the details of marking the good 
apples one at a time and then determining how many apples had 
been marked. 

A conventional programming language, then, is an apple-at-a- 
time language in which all of the details must be carefuUy 
specified in the program and tested to ensure that the program 
does what it is designed to do. An array language is an all-the- 
apples-at-once language in which most of the details are taken 
care of by the language itselfand are not visible to the program- 
mer. Of course, a program written in any language must be 
carefully tested but the testing is usually much simpler with array 
languages. 

/In e.umple 
We shall now consider how a very simple problem is pro- 
grammed in a conventional language and inJ. We shah discuss 
the conventional program briefly and defer a discussion of theJ 
program until the next section. The present discussion will 
emphasize the difference between the apple-at-a-time approach 
of conventional languages and the all-the-apples-at-once ap- 
proach of array languages. 

Suppose, then, that we go to a bookstore and buy some 
books with the following prices: $20.95, $29.50, $22.50, $13.95 
and $19.50. We are interested in the number of books we 
purchase, the total cost, and the prices of the cheapest book and 
of the most expensive book. We may very simply keep a cumula- 
tive record of the information we want by counting the books as 
we select them, adding the cost of the current one to the total 
cost, and when necessary updating the record of the cheapest 
and most expensive books. When we are finished we will have 
the information we desire. 

The following is a BASIC program that will calculate the 
desired summary statistics given the prices of the books: 

REM Summary of book prices 
DATA 20.95, 29.50, 22.50, 13.95, 19.50, 0 
N = 0 

Total = 0 
MinPrice = 999 
MaxPrice = 0 
READ Price 
WHILE Price > 0 

N = N + 1 
Total = Total + Price 
IF Price < MinPrice THEN 

MinPrice = Price 
ELSEIF Price > MaxPrice THEN 

MaxPrice = Price 
END IF 
READ Price 

WEND 
PRINT N, Total, MinPrice, MaxPrice 
STOP 
END 

A person with litde or even no knowledge of BASIC should be 
able to see the similarity between the steps in the program and 
the informal method of the last paragraph. We note that the 
repetitive operations beginning with the WHILE statement 
continue until a book price of zero is encountered at the end of 
the list of valid prices. Furthermore we note previous to the 
WHILE statement the variables in the program are set to their 
initial values--zero for each of the tally and total cost, and 
unrealistically large and small minimum and maximum prices 
respectively. 

The following is the J program for this problem: 

hum= : # 

total= : +/ 

min=: <./ 

max= : >. / 

summary=: num, total, min, max 
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Without any knowledge of J at all, we may see the lack of explicit 
repetition in these statements, and the similarity of the program 
to the all-the-apples-at-once procedure of the last section. If we 
define the book prices by the statement 

P=: 20.95 29.50 22.50 13.95 19.50 , 

then the program may be executed by the statement 
summary P 

to give the results 
5 106.4 13.95 29.5 

for the number of books, total price, and minimum and maxi- 
mum prices, respectively. 

In the next part of this paper we shall discuss a few simple 
applications of J, beginning with the book calculations of the last 
paragraph. 

A taste of J 
Buying books 
We shall begin our bfieflook atJ by developing the very simple 
programs required for the summary of book prices. We shall 
introduce just sufficient J as we proceed to solve the problem. 
First of all we shall define the list 

P=: 20.95 29.50 22.50 13.95 9.50 

of book prices. (We might have named the list P r i c e s  or 
BookPri ees, or some other descriptive name, but have chosen 
the name P for brevity.) The list P could contain any number of 
prices, and would be defined in the same manner except that 
very long lists would be defined as a number of shorter lists 
which would be combined to give the final list. 

We mentioned earlier that the familiar operations of addition, 
sub traction, multiplication and division have been supplemented 
in J with a large number of additional primitive operations 
usually referred to as "verbs" by analogy with English where the 
term refers to the action words in the language. We shall intro- 
duce some of these verbs in our solution of the present example. 

First of all, the number of books purchased is equal to the 
number of items in the list P. This is given by the primitive verb 
tally represented by #, so that #p has the value 5, the number of 
items in P. To avoid remembering the symbol #, we may define 
the simple verb 

Ilum= : # 
so that num P is 5. 

Before proceeding further we might remark thatJ has been 
implemented on the computer as an interactive language so that 
expressions may be evaluated, and operations, i.e., verbs, 
defined immediately on input. Expressions entered by a user are 
indented three spaces and any system responses start at the left 
margin. For example, the operations performed so far in this 
example would appear as follows if input: 

P=: 20.95 29.50 22.50 13.95 19.50 

#P 

5 

hum= : # 

num P 

5 

In addition to being used in this manner programs may be 
entered and stored for subsequent execution. 

The total amount spent on books is given by the stun of the 
items in the list P, or 

2 0 . 9 5 + 2 9 . 5 0 + 2 2 . 5 0 + 1 3 . 9 5 + 1 9 . 5 0  
which is 1 0 6 . 4  o. For convenience, the familiar verb plus + may 
be applied to all of the items of a list by deriving from it the verb 
+ /  so that the expression + / p  is equivalent to the previous 
expression for the sum of the items of P. As with the primitive 
verb # of the previous paragraph, we may define the verb 

total= : +/ 

so that we may convenienfly write t o t a l  Pwhichwillhave the 
value 2 0 6 . 4 0 .  

TheJ  verb + / m a y  be considered analogous to the familiar 
sigma symbol ~ ofconventionalmathematical notation where ~x 
or 21x~ represents the sum of the items of the vector or list x. The 
sigma notation for a sum may be extended in conventional 
mathematical notation ordy to the product so that IIx or IIxl 
represents the product of the items of the list x. In J, however, 
verbs defined for pairs of numbers may be simply extended to 
lists. We shall introduce two of these in our analysis of book 
prices. 

The verb lesser of<. gives the smaller of two numbers, and, 
for exarnple~ 1 3 . 9 5  < .  1 9 . 5 0  is 1 3 . 9 5 ,  and by extension 
<. / gives the smallest item of a list so that < . / P  is equal to 
1 3 . 9 5 ,  the smallest book price. Similarly, the expression > . / ,  
where >. is the verb/arger of, is equal to 2 9 . 5 0 ,  the price of the 
most expensive book. For convenience, we may define the verbs 

rain=: < . /  
and 

max= : >. / 

sothatmin Pis13.95 andmax Pis29.50. 

We may summarize the calculations for the book prices with 
the verb 

summary=: num, total, min, max 

so that 
summary P 

gives the four-item list 
5 106.40 13.95 29.50 

representing the number of books, total price, minimum price 
and maximum price, respectively. 

The following Windows form written inJ allows the calcula- 
tions to be done without any knowledge oftheJ verbs developed 
above or indeed without knowing that J, rather than some other 
language, has been used. The user simply enters the prices in the 
Prices box and clicks the OK button. 
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Summing rows and columns 
In this section we shall consider briefly a type of calculation that 
is fundamental to a large class of statistical applications. In a 
single dimension the calculation involves finding the sum of a list 
of numbers such as the book prices of the last section. In two 
dimensions it is simple to state, visualize and solve: find the row 
and colunm sums, the so-called marginal sums, in a table of  data. 
It is the generalization to the various marginal sums in data 
arranged in an array of  arbitrary dimension which is the difficult 
and important problem. 

As an example we shall use some data taken from Prindples 
and Procedures of Statistics by K. G. D. Steel andJ.  H. Torr ie  
(McGraw-Hill, 1960) and even then we shall use only part of the 
data. The  data are the yield in bushels per acre for each of two 
varieties of oats and each of three different seed treatments with 
four replications of each variety-treatment combination. 

T o  begin, consider the four observations 
62.3 58.5 44.6 50.3 

for the first variety-treatment combination. There  are the 
observations themselves and also their sum 2 1 5 . 7  which is a 
measure of the effectiveness of this particular combination. 

Now consider the three treatments for the first variety which 
are given by the two-dimensional array: 

62.3 58.5 44.6 50.3 

63.4 50.4 45.0 46 • 7 

64.5 46.1 62 .6 50.3 

with the rows representing treatments and the columns repre- 
senting replications. There  are now four different quantities to 
calculate: the observations themselves, the row sums 

215.7 205.5 223.5 

which give a measure of the effectiveness of  each of the three 
treatments, the column sums 

190.2 155 152.2 147.3 

which measure the variability between the replications, and the 
overall sum 6 4 4 . 7  which gives a measure of the yield of  the firs t 

variety of oats. 
If  we now consider the second variety of oats, we have the 

data arranged in the three-dimensional array 
62.3 58.5 44.6 50.3 

63.4 50.4 45.0 46.7 

64.5 46.1 62.6 50.3 

75.4 65.6 54.0 52.7 

70.3 67.3 57.6 58.5 

68.8 65.3 45.6 51.0 

which has two  levels each with 3 rows and 4 columns with the 
levels representing the varieties and the rows and columns 
representing treatments and replications~ respectively. I f  we 
count the array itself and the total over all of  the data, there will 
be 2 * 2 * 2 or 8 different marginal sums to compute. For 
example, the sum over the levels 

137.7 124.1 98.6 103.0 

133.7 117.7 102.6 105.2 

133.3 111.4 108.2 101.3 

measures the yields of varieties for both treatments and replica- 
dons, and the sum over both levels and replications, 

463.4 459.2 454.2 , 

measures the treatments. 
Ifthis experiment were repeated for two or more methods of 

cultivation, then the data would be represented as a four- 
d imens iona la r rayandtherewouldbea to ta lo f2  * 2 * 2 * -  

2 or 16 different sums that could be computed. The  inclusion 
of a fifth factor, for example, the repetition of  the experiment at 
a different location where the soil was different, would give 3 2 
marginal sums. 

Once the marginal sums, or at least an appropriate selection 
of  them depending on the experimental design, have been 
computed~ it is relatively simple--and we must emphasize the 
word "relative]y"--to find the necessary components of  the total 
variation to test whatever statistical hypotheses are of  interest. 
The  construction of appropriate verbs inJ for the calculation of 
any or all marginal sums in arrays ofarhitrary size and dimension 
is a problem to which a very considerable amount of attention 
has been devoted. T h e  resulting verbs have formed the basis of 
statistical packages of considerable utility. 

We shall make only a few remarks about the use of J to find 
marginal sums. T h e  four observations for the first variety- 
treatment combination may be found very simply as 

+/62.3 58.5 44.6 50.3 

w h i c h  i s eq-ua l  t o 2 1 5 . 7 .  I fVl  represents the three-by- 
four array given above for the three treatments and four replica- 
dons for the first variety, then the treatment totals are the row 
marginal sums + / "  1 Vl  or 

215.7 205.5 223.5 ~ 

the replication totals are the column marginal sums + / V 1  or 
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190.2 155 152.2 147.3, 

and the grand total is the sum over either of these margins which 
may be expressed as either + / + / "  1 Vl  or + / + / v 1 .  For arrays 
of  more than two dimensions we shall say simply that any 
marginal may be found by appropriate rearrangement of the 
coordinate axes followed by application of  the verb + / b u t  we 
shall not bother the reader with the details. 

Tossing coins 
T h e  tossing of coins and the rolling of dice, and also the drawing 
balls from urns, have long been used to provide examples of 
statistical processes. Amongst the best-known examples in the 
statistical literature are the experiments of  the English biologist 
W. F. R. Weldon (1860-1906) which he carried out to illustrate 
his statistical arguments. In one he tabulated the results of rolling 
twelve dice 4096 times counting as a success the occurrence of 
4, 5 or 6. Another set of  dice data which is apparently not as well 
known as Weldon's was generated by a Swiss scientist Rudolf  
Wolf  who tabulated the results of  100 000 rolls of  a die. 

A more recent source of coin-tossing and dice-throwing 
examples is Warren Weaver's Lady Luck: The Theory of Proba- 
bility (Doubleday, 1963). The  author who was in his late 60s 
when the bookwas published had had a varied and distinguished 
career firs t as a mathematician in academia and later as a scientific 
administrator in a number of organizations. (Amongst his many 
publications is ,41ice in Many Tongues (The University of  Wis- 
consin Press, 1964), a delightful discussion of the life of  Lewis 
Carroll, the writing of the Alice books, and their translation into 
over forty languages.) Lady Luck gives an elementary and very 
readable introduction to the origins and development of proba- 
bility theory and the statistics of  chance. Weaver does not avoid 
mathematical notation hut introduces and uses it in a manner 
which enhances rather than detracts from the exposition. Lady 
Luck is a gem of  a hook which I have used with great pleasure 
ever since I acquired my first copy. It is still in print, and 
deserves to remain so for a long, long time. 

We might note that Weaver performed his random experi- 
ments, not from the actual tossing of coins and the rolling of  dice, 
but from simulations performed using tables of  random numbers, 
a common feature ofstatistica] tables at the time he was writing. 
For example, a sequence of digits selected arbitrarily from the 
table could represent a sequence of  coin tosses if an even digit 
were considered a head and an odd digit a tail. He  mentions the 
RAND Corporation's ,4 Million Random Digits with 100 000 
Normal Deviates published in 1955 which was reviewed, I 
believe, with some diabeliefin TheArew York Times. 

In this section we shall discuss only the occurrence of the 
number of heads in the repeated tossing of an unbiased coin and 
discuss its simulation usingJ. It is well-known that the ratio of  
the number of  heads to the total number of  tosses approaches 0.5 
as the number of  tosses increases. The  following graph shows the 
results of  one simulation of  Y00 tosses: 
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However,  Weaver points out that the difference between the 
numbers of heads and tails tends to grow as the number of tosses 
increases. This is shown in the second graph representing the 
same simulation as that shown in the first one: 
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Thus if one were to bet on the outcome of  heads on each toss it is 
not altogether certain that one wotdd necessarily break even in a 
long series of  tosses since one's capital, if  modest, could be wiped 
out by a long run of tails. This  is especially true ffone were using 
a martingale system of  betting where one doubles one's bet on 
each loss and reverts only to the original bet on a win. 

The  above results may be taken as a warning, if any warning 
is necessary, against even the most innocent forms of gambling, 
except possibly as an occasional entertainment undertaken with 
a knowledge of the odds involved and with a firm resolve to keep 
one's expenditures within reasonable limits. However,  a discus- 
sion of  the use of J in the above simulation can give a further 
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understanding of the J language, and we give it here for the 
interested reader. 

Random numbers may be generated very simplyinJ with the 
verb roll ?. For example, the expression ? 2 gives a random digit 
0 or I which could be considered to represent the results of one 
toss of an unbiased coin where 0 represents tails and 1 heads. As 
another example, ? 6 gives an integer picked at random from the 
f i rs t  six non-negative integers, and could be used to simulate the 
roiling of a die with the faces numbered 0, 1, 2 , . . . ,  5. If  one 
prefers the more conventional numbering of faces, one could 
introduce the verb > : increment which adds i to its argument, 
and use the expression > : ?6 m simulate one roll of a die. 

The expression 
? 2 2 2 2 2 2 2 2 2 2 2 ,  

which could have the value 
0 1 0 1 0 0 1 1 1 0, 

could represent 10 tosses of an unbiased coin with a head 
occurring on the second, fourth, seventh, eighth and ninth 
tosses. Therefore, the expression 

+/? 2 2 2 2 2 2 2 2 2 2 

which gives the sum +/over the expression to the right 

gives the number of heads occurnng in 10 tosses of an unbiased 

coin. Finally, as a convenience we introduce the verb shape $ to 
give a list of arbitrary length all of whose items are equal. 
Therefore, the expression 10 $ 2 is the list of ten 2 s given at the 
beginning of the paragraph, and the expression + / 910 $ 2 gives 
the number of heads in 10 tosses. 

We may now return to the coin-tossing example introduced 
earlier in the section. Let the number of tosses be N so that N has 
the value 300 in the above simulation. For convenience in this 
discussion we shall give N the value of 10 by the expression 

N= : I0 . 

Therefore, 10  coin tosses are given by ?N$ 2 which could 
have the value 

0 1 0 1 0 0 1 1 1 0 

so that the cumulative number of heads is 

0 1 1 2 2 2 3 4 5 5 .  

InJ  this is given conveniendy by the expression 
Heads=: +/\?N$2 , 

where the verb + / \  gives the cumulative sum rather than the 
final sum given by + / .  

To give the toss number we introduce the verb integer i .  
which gives a list of non-negative integers, and, for example, 
i .  5 i s  the list 0 1 2 3 4 .  Thus the toss number is given by 

TossNum=: >: i. N, 

where > : is the verb increment which has already been intro- 
duced, and has the value 

1 2 3 4 5 6 7 8 9 1 0 .  

The ratio of the number of heads to the number of tosses is 
Ratio=: Heads % TossNum 

whose rounded value is 
0 0 . 5  0 . 3 3 3  0 . 5  0 . 4  0 . 3 3 3  0 . 4 2 9  0 . 5  

0.556 0.5. 

The excess in heads over tails, or rice versa, on any toss is 
simply the number of that toss minus the difference between the 
number of heads and the number of tails obtained so far. A little 
thought will show that this is given by the expression 

Tos sNum--2*Heads 

which has the value 

1 0 1 0 1 2 1 0 _i 0 , 

where * is the verb times. Finally, we introduce the verb magni- 
tude I to make the differences non-negative, and we have the 
expression 

Dill=: I T ° s s N u m - - 2 * H e a d s  

which has the value 
1 0 1 0 1 2 1 0 1 0  

Christmas cards 
For some years now I have made my own Christmas cards and 
most of the other cards I use during the year. There are several 
reasons why I do this: I enjoy making them; I can send my 
friends cards which are different; and I save money. All of these 
cards have themes rdating to some non-professional topic, and 
contain a picture, usually my cat or a Japanese scene, taken by 
me or by a friend--all o f m y  cards, that is, except one. I would 
like to describe this card briefly now. 

To  begin with we recall from high-school mathematics the 
factorial function which gives the product of the successive 
positive integers. For example, factorial 3 is 6 which is the 
product of the integers 1, 2 and 3, andfadorial 5 is 120 which 
is the product of the first five positive integers. Another example 
is factorial 5£, the number of arrangements of  the 52 cards in a 
deck, which is equal to approximately 8 followed by 67 zeros, a 
very large number indeed. (I had this statement in an earlier 
paper except that I gave the value as 8.1 followed by 67 zeros. 
One reader pointed out quite correctly that 8.1 followed by any 
number of zeros was stiU 8.1 and was not a large number at all!) 

InJ the factorial function is given by thefactorialverb l, and, 
for example, ! 3 i s 6 ,  ! 5 i s l 2 0 ,  and !i. 9is 

! 1 2 3 4 5 6 7 8  

which has the value 
1 2 6 24 120 720 5040 40320 . 

The factorial verb can easily produce very large numbers, and, 
for example, ! 10 is 3 . 6 2 f l S e 6 ,  ! 20 is 2 .  4329e18 ,  and ! 52 
is 8 . 0 6 5 8 2  e 67 as we have seen. The  factorial function may be 
computed exacdy in J by suffixing the argument with x, and 
! 20x is 

2432902008176640000 , 
and ! 52x i s  

8065817517094387857166063685640376 

6975289505440883277824000000000000 , 

an integer with 68 digits. 
Some years ago Martin Gardner, that indefatigable writer of 

fascinating arfides and books on a variety of mathematical and 
scientific topics, published the article "Factorial Oddities" in 
Scientific American which was later republished in his Mathe- 
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matical Magic Show (Vintage Books, 1978). In this article he 
introduced tree factorials as those factorials whose digits may be 
arranged in a triangle with one digit in the first row, three in the 
second, five in the third, etc. and could with a little imagination 
be considered as Christmas trees. 

The factorials of  the first three positive integers are trivially 
tree factorials of a single digit. The first non-trivial tree factorial 
is ! 7 or 504  0 which may be displayed as 

5 

040 . 

Gardner's artic]e gives the twenty tree factorials between seven 
and one thousand, and displays in triangular form the factorials 
for 105 which has 169 digits and for 508 which has 1156 digits. 
The second last of  these factorials may be computed exactly inJ 
by the expression ! 105x which, with a litde reaarangement the 
details of  which we shaU omit, may be disp]ayed as 

1 
0 8 1  

39675 
8240290 

900504101 
30580032964 

9720646107774 
902579144176636 

57322653190990515 
3326984536526808240 

339776398934872029657 
99387290781343681609728 

0000000000000000000000000 

/ so far (and a little more) 
In this section we shall give examples of the J verbs we have 
introduced so far together with a few others. The following rep- 
resents a dialogue with the computer where the J expressions 
entered by the user are indented automatically three spaces, and 
the responses by the computer begin at the left margin. The 
comments which follow the expressions and which begin with 
ms. are for the reader and are ignored during evaluation. 

3 + 5 NB. Plus 
8 

2 * 3 NB. Times 
6 

3 - 5 NB. Minus 
2 

15 % 6 NB. Divided by 
2.5 

2 + 3 * 4 NB. Precedence 
14 

2 * 3 + 4  
14 

(2 * 3) + 4 
i0 

4 + 2 * 3  
i0 

% 8 
0.125 

*- 2.5 
6.25 

%: 125 
ii.1803 
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NB. Reciprocal 

NB. Square 

NB. Square root 

6.5 <. 3 ~. Lesser of 
3 

4 >. i0 NB. Larger of 
i0 

<: 8 NB. Decrement 
7 

>: 3.14 NB. Increment 
4.14 

2.3 + 5 + 3.5 + 6 NB. Sum 
16.8 

+/2.353.56 
16.8 

+/\2.3 5 3.5 6 NB. Cum. sum 
2.37.310.816.8 

w=: 2.3 5 3.5 6 
#w NB. Tally 

4 
+/w 

16.8 

+l\w 
2.37.310.816.8 

<./w ~. Minimum 
2.3 

>./w NB. Maximum 
6 

1056 ms. Shape 
6 6 6 6 6 6 6 6 6 6  

71056 NB. Roll 
0 4 2 3 1 0 4 4 5 2  

>:71056 
4 5 1 1 4 5 1 3 1 3  

I_3.5 0 4 ms. Magnitude 
3.5 0 4 

i. i0 NB. Integer 
0 1 2 3 4 5 6 7 8 9  

a=:i. 34 
a 

01 2 3 
45 6 7 
8 9 i0 ii 

+/a NB. Column sums 
12 15 18 21 

+/"i a ms. Row sums 
6 22 38 

!6 NB. Factorial 
720 

* / 1 2 3 4 5 6  
720 

!25 
1.55112e25 

1 2 5 x  
15511210043330985984000000 

Additional topics 
Teaching Imnguage$ 
Shortly after I retired I started to study Japanese. There are 
several reasons but the main one was probably my interest in 
languages. I'm not sure what I expected to learn, but now I can 
read and write a litde, speak very little, and understand spoken 
Japanese almost not at all. What I didn't expect, though, was to 
become interested in the teaching of Japanese. My enjoyment in 
seeing how the language is presented helps compensate for my 
rather spectacular lack of  progress in it. 

Most of my Japanese texts teach the language by the telling of  
some continuing story which although fictional is intended to be 
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realistic. Let me mention very briefly one of my favourite books. 
It is Business Jtzpanese by MichadJenkins and Lynne StrugneU 
(NTC Publishing Group, 1993) and is in the well-known 
English "Teach Yourself Books" series. The story revolves 
around Wajima Trading Company in Tokyo and the British 
company Dando Sports which wants to market its sporting 
equipment and clothing in Japan through Wajima. We are 
introduced to various members of the staff at Wajima and learn 
about the company's organization and how business operates in 
Japan. In one of the later chapters we have a lecture on quality 
control. One of the main characters is Mr. Lloyd, marketing 
manager for Dando, who visits Japan on two occasions to draw 
up a contract. We follow Mr. Lloyd as he works with the 
company and meets some of the staffsocially. 

The Japanese hiragana and katakana syllabics are introduced 
in Chapter 1 and the kanji (Chinese) characters are introduced 
a few at a time very shortly thereafter. The three classes of 
characters soon take precendence over the romaji (Roman) 
characters used for transliteration. There are twenty chapters and 
the story begins in Chapter 2 with an assistant manager of 
Wajima checking out of a hotel before returning to Tokyo. Each 
chapter has the same format: a summary of the story so far (in 
Japanese beginning in Chapter 12), another installment of the 
story, in both Japanese characters and in romaji; new vocabulary; 
grammatical notes; exercises; a short reading exercise; and a one- 
page essay in English on some aspect of Japanese business. 
There are several Appendices with grammar summaries, and 
English-Japanese andJapanese-Engfish glossaries. From the very 
beginning I had the feeling of meeting real Japanese people 
working in Japan and living as Japanese people live. 

Contrast this introduction toJapanese to the introduction to 
a programming language in most programming texts and 
adopted in most introductory courses. (There are a few texts 
which are exceptions but they do not appear to be very popular.) 
The language does not seem to matter. It can be BASIC, Pascal, 
C/C++ or Java. The texts and courses are really introductions to 
syntax with numerous examples and exercises intended to 
illustrate and reinforce grammatical principles. (A colleague once 
remarked to me that most introductory programming courses 
were as interesting as a course in the conjugation of verbs.) 
Furthermore, many of the exercises are artificial and even 
juvenile. For example, the first example in Chapter 4 of one of 
the Java texts was a program to print either "ho-ho", "he-he" or 
"ha-ha"; itwas then modified to print"yuk-yuk". As bad as is the 
pedagogy, the writing is even worse in some of the books. Good 
scientific and technical writing does exist, of course, but little is 
to be found in computing texts. 

Of course, expositions of array languages can be poorly 
organized and presented too. However, one of the advantages of 
these languages is that they may be used almost immediately to 
do something useful without first introducing the amount of de- 
tail required with conventional Ianguages. (Compare for exam- 
ple, the BASIC and J programs for the book-buying example 

given earlier in this paper.) Put another way, array languages may 
be easily used in the exposition of some subject--statistics, logic, 
some branch of arithmetic or algebra, say--without having de tails 
of the language intrude on the subject matter. Much of my later 
work has been directed toward this end. 

My attitudes towards the teaching and use of programming 
languages have been influenced by Kenneth Iverson who has 
been giving his views in lectures, technical reports and books for 
almost forty years. Writing on the 25th anniversary of APL in 
1991 in a paper giving one of the first published accounts of J he 
wrote "...Although APL has been exploited mostly in commer- 
cial programming, I continue Lo believe that its most important 
use remains to be exploited: as a simple, precise, executable 
notation for the teaching of a wide range of subjects." Implicit in 
this statement is the conviction that the details of a language, 
whether it beJ  or Japanese, should be introduced as needed in 
the exposition of the subject whether it be teaching multiplica- 
tion tables in a Canadian classroom or introducing the quality 
control methods of the American W. Edwards Deming to 
Japanese assembly lines. 

Remembering the past 
When I was an undergraduate I took a required course in the 
history of mathematics. I enjoyed the course but I have the 
feeling now that I probably wished then that I had been spending 
my time on something more practical such as another course in 
calculus or one in actuarial mathematics. However looking back 
now I realize that this course was one of the most important 
courses I took because it awakened my interest in the history of 
science, an interest which has never left me but has only in- 
creased over the years. 

Unfortunately now there appears to he little opportunity for 
students to become acquainted with the history of their disci- 
pline. A few professors have an appreciation of the development 
of their subject and are able to impart this understanding to their 
students. However the historical development of a scientific 
discipline is not considered to be a marketable ski]] and has been 
displaced, if it were ever in the curriculum to begin with, by 
topics created by the many interesting and exciring developments 
in modem technology. In this section I can only mention a few 
of the historical references which I have enjoyed and indicate 
some of the newer sources of historical material. 

The first book on computers that I bought was Faster tha.n 
Thoughtwhich was edited by B. V. Bowden (Pitman, 1953), and 
was subtitled "A Symposium on Digital Computing Machines." 
It is a collection of twenty-four papers written by persons who 
were working in the new field of digital computation, some of 
whom axe now considered to he amongst the great pioneers of 
computing. The book was reprinted seven times in the first 
fifteen years after its publication and still makes enjoyable 
reading. The editor contributed a Preface and four chapters, the 
most noteworthy in my opinion being the first, "A Brief History 
of Computing', which may be read for the pleasure of its literary 
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style alone. 
A little book which I enjoyed reading and which I used in my 

teaching and research was Electronic Computers by S. H. 
Hollingdale and G. C. Tootill (Penguin, 1970). Itwas pubhshed 
first in 1965 and revised in 1970 and 1975. This book contains 
an excellent account of the history of computing, a discussion of 
the design of both analogue and digital computers, a treatment of 
computer programming, and finally a discussion of various 
applications of computers. Although very dated now, this book 
gives an excellent picture of computers and their use in the 1960s 
and early 1970s. The two chapters on the history of computing 
still make an excellent but bfiefintoducfion to the subject. It is a 
pity that a modem version of this admirable tittle book is not 
available today. 

We might note that Professor Hollingdale published Makers 
of Mathemalica (Penguin, 1989) at the age of 79. In the Preface 
he remarks that he felt no need to include scholarly footnotes and 
that the references were "limited, with a few exceptions, to 
sources from my own library which I consulted while writing this 
book." A more pleasant way to spend part of one's retirement is 
difficult to imagine! 

A more scholarly but very readable account of the history of 
computing is A History of Gomputing Technology by Michael 
Williams of the University of Calory  (Prentice-Hall, 1985; 
Second Edition, 1997) which describes the development of 
arithmetic and calculation tools from ancient Egypt to the 
IBM/360. This is an excellent introduction to the subject for the 
more serious reader. 

Two books have recently come to my attention which pro- 
vide aninteresting contrast to the books just discussed. They are 
Frontiers of Complexity by Peter Covey and Roger Highfield 
(Fawcett Columbine, 1995) and DarzoinAmong the Machines by 
George B. Dyson (Perseus Books, 1997). Both books are written 
in an engaging style, take a strong historical approach to their 
subject, and have many references. The first is an introduction to 
the relatively new subject of complex systems and its applications 
in mathematics, physics, chemistry, biology and the social 
sciences; the second gives the author's idiosyncratic view of the 
evolution of computers. Indeed, Covey and Highfield's book 
with its over sixty pages of endnotes, ten-page glossary, and 
eleven pages of references may be recommended as a superb 
introduction to computers for the general reader. 

Even this very brief discussion of a few of my favourite com- 
puting hooks would be incomplete without some mention of 
Alan Turin~ The Enigma of Intelligence by Andrew Hodges, 
which was originally published by Burnett Books in 1983 and 
has been pubfished since then in at least two paperback editions. 
Apparently a revised edition has just  been published. One 
reviewer described it as "one of the finest pieces of scholarship 
to appear in the history of computing." This long biography-- 
almost 600 pages in the original edition--gives an incisive 
account of the life and work of one the pioneers of computing 
who was the originator of the eponymous Turing machine, a 
theoretical device for studying the limits of computability. It also 
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sheds light on the English class and education systems, code- 
breaking during the Second World War in which Tufing played 
a decisive role, and events leading to the reform of the law 
regarding homosexuality in Britain. Incidentally, Turing figures 
briefly in Enigma by Robert Harris (Hutchinson, 1995), a 
fictional account of code-breaking which as well as being a most 
safis~ing thriller gives references which were not available when 
Hodges's book first appeared. 

About the only published accounts of array languages, apart 
from conference proceedings, are in the issue of the IBM,Systems 
Journal (Vol. 30, No. 4, 1991) which marked the twenty-fifth 
anniversary of APL. Of  particular note are Donald McIntyre's 
encyclopaedic "Language As an Intellectual Tool: From Hiero- 
glyphics to APL" which reads almost as a hymn to Kenneth 
Iverson and his work with APL, and what was then the new 
dialect J, and Iverson's "A Personal View of APL" which gives 
one of the first published accounts of the evolution of APL into 
J. Unfortunately there appears to be nothing published on the 
development of Nial and its relation to APL andJ. 

Persons wishing to learn about the history of computing may 
consult the World Wide Web where there is an overwhelming 
amount of material available. Here we shall mention only three 
sites which because of the many links to other sites will provide 
a wealth of information. The Virtual Museum of Computing at 

www.museu ms. reading, ac. uk/vmoc/ 
includes an "eclectic collection of World Wide Web (WWW) 
hyperlinks connected with the history of computing and on-line 
computer-based exhibits available both locally and around the 
world." The Alan Turing Home Page at 

www. turing, org. uk/turing/ 
is maintained by Alan Hodges and was recently judged "one of 
the world's top 100 websites." A very interesting source ofinfor- 
marion on vintage and modern calculators is given at 

www. dotpoint, com/xnumber/ . 

Conclusion 

The question of the best programming language is similar to the 
question of what is the best natural language. EngLish? or Japa- 
nese? or German? o r . . . ?  The answer depends on who we are, 
where we and our families have come from, what we are now 
doing, and for whom we are doing it. Regardless of how many 
languages we know, there will always be one or two which we 
find most useful and with which we are the most comfortable. 

I feel the same way about programming languages. I have 
used many different ones and have liked them all. However, it is 
the array languages--first APL, then Nial and now J -  that I have 
found the inost appealing intellectually, the most pleasant to use, 
and the best able to satisfy most of my computational needs. 

All I have tried to accomplish in this paper is to present a 
personal view of the devdopment ofprogramminglanguages and 
to show my enthusiasm for the three which I have chosen to caU 
array languages and to emphasize the importance of keeping the 
historical development of one's speciality clearly in mind. 
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As this is my third attempt to explain what I have done with 
my professional life, the following quotation, which I have used 
before, from one of my favoufite fictional characters, takes on an 
added sigafificance: 

",$0 there it is" said Pooh, when he had sung this to 
himself three h'mes. "It's come different from what I 
thought it would, but it's come. Arow I muat go and 
sing it to Piglet. " • 
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S ZNCZ IBM's APL~36o nEe, AntE AVXUAnLE IN 1966, many 
dialects have been developed, and competition has led to 
emphasis on their differences, an emphasis reflected in 

their distinctive names: APL\1130, APL\360, APLSV, APL2, 
SHARP APL, Nial, Dyalog APL, A, APL2000,J, K, and others. 

Although natural to healthy competition, the emphasis on 
differences has discouraged the sharing of ideas, and still tends 
to blind programmers to the ease of moving between dialects, an 
ease not shared by programmers unschooled in the core ideas of 
APL. 

As emphasized in [1], these core ideas were: 
• The adoption from Tensor Analysis of a systematic treat- 

ment of arrays, in which every entity is an array, and 
different ranks lead to scalars, vectors (or lists), matrices 
(or tables), and higher-dimensional arrays (or reports). 

• Operators (in the sense introduced by Heaviside [2]), 
which apply to functions to produce related functions. 

In this paper I will review developments in the APL dialects, 
emphasizing similarities and the ways in which competing ideas 
have been, and could be, shared and adapted to competing sys- 
tems. My hope is to encourage the relatively small APL family to 
mute their differences, and present a more united face to the 
programming world. 

Alphabets 
Although the particular alphabet, or even the font used, is a most 
superficial aspect of a language, it can make a dramatic assault on 
a beginning reader--as anyone who first met German in the 
Gothic font can testify. First encounters with the unfamiliar 
alphabet of the earliest APL has certainly discouraged many, in 
spite of its highly-mnemonic character. 

At the time of its design there was no adopted standard, and 
it seemed reasonable to exploit the newly available IBM S electric 
typewriter (with its easily-changed typeball) to design our own 
alphabet, and to use the backspace ability of the typewriter to 
produce composite (overstruck) characters. 

The APL communitywas too small to influence the design of 
the now widely-used ASCII alphabet, and our use of special 
characters led to a series of unforeseen difficulties that have 
significantly inhibited the use of APL: 

• When the "glass terminal" provided by the cathode ray 
tube supplanted the typewriter, it was incapable of 
backspacing to provide the composite characters of APL. 

• APL characters were not provided by early printers, and 
there was a considerable delay before specialized alpha- 
bets could be downloaded to them. 
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