
A Lecture on
Array Languages

--by Keith Smillie
Edmonton, Alberta, Canada

p ROGRAMMING LANGUAGES are introduced briefly and a
distinction is made between conventional and array lan-
guages. The languageJ is given as a modern exemplar of

array languages and is illustrated with a few simple examples.
Some comments are given on the teaching of languages and on
the history of computing.

A much longer discussion of y from which most of the
material in this paper has been taken may be found in
Mostly J, which is available at

www. ca. ualberta, ca/-smiUie/fJpage.htm

Introduction
"If you cannot--in the long run--tell everyone what you have
been doing, your doing has been worthless."

So said the physicist and Nobel laureate Erwin SchrSdinger
in a series of public lectures pubfished in the early 1950s as
Science and Humanism. His remarks may be even more relevant
today when universities emphasize the acquisition ofnew knowl-
edge and its dissemination in scholarly publications, at times so
it seems to the exclusion of the interests of those wishing some
understanding of the sciences as part of their general education.

It is with thoughts like this in mind that I attempt to explain
exactly what it is I have been doing for so many years. I have
spent almost all of my professional life--very agreeably most of
the time--programming, teaching programming, and writing
about programming. Although much of my work has been of a
mathematical or statistical nature and often has involved the use
ofmathemafical notation and mathematical and statistical tech-
niques, much of it is in principle rather simple and within the
grasp of any literate person. I have found my work to be intensely
interesting, and it is just conceivable that there are those who
may find some interest in a brief description that is not burdened
with either technical detail or mathematical notation.

Also I beheve we have an obligation to explain to people how
we spend our professional lives. We owe this to our family and
friends, whom we on occasion may neglect when we become
preoccupied with our work. We also have an obfigafion to others
who support us directly and indirectly and who may often
wonder what they are getting in return.

We shall begin with a look at some of the programming
languages I have used and make the distinction between what I
term "conventional" and "array" languages and emphasize the

differences between them by a simple analogy of counting the
number of good apples in a box of apples. We shall then intro-
duce the array language J by means of a simple example of
analyzing a short list of book prices. The use of J will be filrther
illustrated by a discussion of a few problems with which I have
been concerned during my career. This discussion of J con-

" dudes with a summary of the J operations we have used in the
previous examples. We then return to programming languages
in general with some remarks on both the teaching of program-
ming languages and naturallanguages and also the importance of
keeping an appropriate historical prospective in one's work. We
conclude with a few remarks on the place of array languages in
today's programming environment.

Persons wishing to learn more aboutJ than is given in this
paper are encouraged to visit the Iverson Software Inc. Web site
at "www.jsoftware.com" for futher information, tutorials and
links to related sites.

Programming Languages
Conventional languages
The firs t computer I worked with was the National Cash Register
102A which, as were all computers in the 1950s, programmed in
machine-language. A pro gram consis ted of a sequence of ins true-
fions written in numerical form, each specifying the operation
and the addresses (locations) in memory of the numbers to be
operated on and the address of the result. For example, the
instruction

35 2001 1025 1050
meant "add the number in location 2001 to the number in loca-
tion 1025 and put the sum in location 1050." Data entered into
the computer had to be converted to binary, the arithmetic
performed in binary, and the final results converted to decimal
before being printed. Moreover, the programmer had to expfie-
itly keep track of the size of all numbers throughout a computa-
tion to ensure that they, or at least their binary equivalents,
always remained less than unity in absolute value. (A later
version of the 102A, the 102D, used decimal arithmetic which
removed the problems of conversion between decimal and
binary.) Thus programs for what we would consider today very
simple or even trivial calculations could be quite lengthy. For
example, one program for calculating the average of a list of
numbers required about four dozen instructions.

To simpfify the programming task, most computers were
soon provided with programs which allowed the programmer to
use a somewhat simpler language than machine-language which
would be interpreted one command at a time as sequences of
machine-language instructions. An example was Simple Code for
the Stantec Zebra, a computer installed at the Suflield Experi-
mental Station in Alberta and which I used for the Canada
Department of Agriculture in Lethbridge, Alberta. Programming
in Simple Code was still a most demanding task but it was very
much easier than programming the Stantec Zebra in machine-

1 4 APL

language with its repertoire of, theoretically at least, several
million different instructions.

A breakthrough in programming came in the late 1950s with
the development by the International Business Machines
Corporation of FOKTRAN, for Formula Translating System,
which allowed the programmer to write programs in an
algebraic-like language. The program would be first translated in
its entirety to machine-language and then executed. Since its
release in 1957 FORTRAN has been almost continuously
developed--the latest version is FORTRAN90--and has had a
profound effect on the the development of programming
languages and their teaching.

The appearance of FORTRAN made the use of computers
feasible for people who did not wish to become full-time pro-
grammers at the expense of their chosen professions. Courses in
FORTRAN were soon established at universities and colleges for
students in science and engineering. In the early 1970s at the
University of Alberta FORTRAN was replaced briefly with
ALGOLW and then with Pascal as the first language for comput-
ing science students. Pascal has just been replaced with Java in
most introductory courses. Although there are important differ-
ences between these languages, they are sufficiently similar that
students experience the same problems when learning to use
them.

BASIC, Beginner's AU-Purpose Symbolic Instruction Code,
was developed at Dartmouth College, a small liberal arts college
in New Hampshire, as a simple alternative to FORTRAN for
undergraduate students, most of whom were in the social
sciences and the humanities. The first BASIC program was run
on May 1, 1964 at four o'clock in the morning. It was equivalent
to the evaluation of the arithmetic expression (7 + 8) + 3.
The language was an immediate success and has become
probably the most popular and widely used language in the
world. It received only limited use at the University of Alberta
until the mid-1980s when it became the first language for
students in Arts and Education. Again, in spite of important
differences with the languages already mentioned, students
encountered the same problems in learning it as with the other
languages.

I believe that FORTRAN, ALGOLW, Pascal and BASIC--
and indeed many other languages--are sufficiently similar to be
grouped in a class which I call "conventional" languages. In spite
of their many differences, they all have the characteristic that the
basic unit is, for numerical work at least, the individual number,
and any computation must be broken down into sequences of
operations on these units. For example, the procedure to finding
the sum of a list of numbers would be analogous to that used
manually with a pocket calculator: an accumulating register is
first cleared, and then the numbers are added one at a time into
this register until all of the numbers have been treated. Ifthe sum
were required for a table of numbers representing, say, expendi-
tures in each of several categories for each month of the year,
then the numbers would have to be added row-by-row and

colmnn-by-column. Thus programs for computations which we
can either visualize or express verbally in very shnple terms can
result in very complicated programs which are tedious to con-
struct and prone to error.

On the other hand, in array languages arithmetic and logical
operations may he applied not only to individual numbers but to
lists, tables, and structures of arbitrary dimension. Thus proce-
dures which may become quite complicated with conventional
languages can he expressed very simply with array languages. We
turn to a brief overview of some of these languages in the next
section.

Array languages
The first array langauge I used was APL, for A Programming
Language, originally conceived by Kenneth Iverson while a
graduate student at Harvard University in the early 1950s. It was
intended as an alternative to conventional mathematical notation
for the description of algorithms arising in problems of sorting,
searching and optimization. After leaving Harvard, Iverson
joined IBM where APL was first implemented on a computer in
1966. Since then there have been several major implementations,
the current one being designated APL2.

The principles underlying the design of APL have been sim-
plicity, brevity, uniformity and generality. While the conventions
of mathematical notation have been respected, these principles
have always been given precedence. The data objects in APL are
one-dimensional fists, two-dimensional tables, and in general
rectangular arrays of arbitrary dimension. In addition to the usual
elementary arithmetical operations of addition, subtraction,
multiplication, division and raising to a power, there is a large
number of additional operations which are defined for arrays as
well as for individual numbers. For example, ffwe have a list of
unit prices and a list of quantifies of each item purchased, then a
single multiplication will give a list of the total amount spent for
each item, one addition will give the total amount spent, and ff
there is a sales tax one more multiplication will give the total cost
including tax.

Nial, Nested Interactive Array Language, combines concepts
from APL and other languages within the framework of a
mathematical model called array theory. It was developed over
many years by Trenchard More of the IBM Cambridge Scientific
Center. The name comes from the Old Norse Icelandic name
.~aL The data objects in Nial are arrays whose items may be
arrays, whose items in turn may be arrays, and so on. The basic
items of arrays may be any of several types such as integers,
decimal numbers, literal characters, etc., and different types may
occur in the same array. As with APL, there is a large number of
primitive array operations available and additional operators and
programs may be defined.

Upon retirement about ten years ago, Kenneth Iverson began
work on a "modern dialect" of APL that would provide the
simplicity and generality of APL while at the same time be readily
and inexpensively available on a variety of computers and

~,~c~ ~zooo - VOLUME :~o, N ~ s n ~]

capable of being printed on standard printers. The language was
given the name J by Roger Hui--who along with Ken, his son
Eric, and Chris Burke have been its principal developers--
because, he said, "the letter 'J' is easy to type." (We might note
that the nameJ precedes the naming of Microsoft's Java develop-
ment tool as Visual J++.)

There appear to be no data readily available on either the use
ofarraylanguages relative to other programming languages or the
relative use ofAPL, Nial andJ. APL has been used extensively in
a wide range of scientific and commercial applications and has
had a group of devoted advocates in many universities. It
continues to be used extensively and is supported by IBM and
other major companies. Nial had a small but enthusiastic group
of supporters, mosdy academics, in the 1980s, but appears to be
little used now. Interest inJ has grown in the last few years, and
should continue to grow as the language develops.

Counting apples
An excellent example of the difference between conventional lan-
guages and array languages has been given by Frederick Brooks
of the University of North Carolina. In his example, which we
have modified somewhat, we are to give a list of instructions for
counting the number of good apples in a box of apples. We shall
give the instructions first in the style they would be given in a
conventional language and then in the style of an array language.

The first instruction in the conventional programming style
would be to get a blank piece ofpaper for keeping a tally of the
good apples as we come across them in the box. The next
instruction would he to pick an apple from the box, and examine
it for goodness according to some criterion. If it is a good apple,
then put a mark on the taUy paper. Then pick a second apple,
examine it for goodness, and if it is a good apple put another tally
mark on the paper. Then pick another apple , Continue this
procedure of examining the apples one by one until all of the
apples in the box have been examined and the occurrence of the
good apples recorded. The number of good apples will be given
by adding the number of marks on the tally sheet.

On the other hand, the instructions given in the style of an
array language would consist of a simple statement such as "Mark
all of the good apples in the box and then add up the marks." It
would be assumed that the person to whom the instructions were
given would be able to work out the details of marking the good
apples one at a time and then determining how many apples had
been marked.

A conventional programming language, then, is an apple-at-a-
time language in which all of the details must be carefuUy
specified in the program and tested to ensure that the program
does what it is designed to do. An array language is an all-the-
apples-at-once language in which most of the details are taken
care of by the language itselfand are not visible to the program-
mer. Of course, a program written in any language must be
carefully tested but the testing is usually much simpler with array
languages.

/In e.umple
We shall now consider how a very simple problem is pro-
grammed in a conventional language and inJ. We shah discuss
the conventional program briefly and defer a discussion of theJ
program until the next section. The present discussion will
emphasize the difference between the apple-at-a-time approach
of conventional languages and the all-the-apples-at-once ap-
proach of array languages.

Suppose, then, that we go to a bookstore and buy some
books with the following prices: $20.95, $29.50, $22.50, $13.95
and $19.50. We are interested in the number of books we
purchase, the total cost, and the prices of the cheapest book and
of the most expensive book. We may very simply keep a cumula-
tive record of the information we want by counting the books as
we select them, adding the cost of the current one to the total
cost, and when necessary updating the record of the cheapest
and most expensive books. When we are finished we will have
the information we desire.

The following is a BASIC program that will calculate the
desired summary statistics given the prices of the books:

REM Summary of book prices
DATA 20.95, 29.50, 22.50, 13.95, 19.50, 0
N = 0

Total = 0
MinPrice = 999
MaxPrice = 0
READ Price
WHILE Price > 0

N = N + 1
Total = Total + Price
IF Price < MinPrice THEN

MinPrice = Price
ELSEIF Price > MaxPrice THEN

MaxPrice = Price
END IF
READ Price

WEND
PRINT N, Total, MinPrice, MaxPrice
STOP
END

A person with litde or even no knowledge of BASIC should be
able to see the similarity between the steps in the program and
the informal method of the last paragraph. We note that the
repetitive operations beginning with the WHILE statement
continue until a book price of zero is encountered at the end of
the list of valid prices. Furthermore we note previous to the
WHILE statement the variables in the program are set to their
initial values--zero for each of the tally and total cost, and
unrealistically large and small minimum and maximum prices
respectively.

The following is the J program for this problem:

hum= : #

total= : +/

min=: <./

max= : >. /

summary=: num, total, min, max

1 6 ~ L Q~o,e C~aa

Without any knowledge of J at all, we may see the lack of explicit
repetition in these statements, and the similarity of the program
to the all-the-apples-at-once procedure of the last section. If we
define the book prices by the statement

P=: 20.95 29.50 22.50 13.95 19.50 ,

then the program may be executed by the statement
summary P

to give the results
5 106.4 13.95 29.5

for the number of books, total price, and minimum and maxi-
mum prices, respectively.

In the next part of this paper we shall discuss a few simple
applications of J, beginning with the book calculations of the last
paragraph.

A taste of J
Buying books
We shall begin our bfieflook atJ by developing the very simple
programs required for the summary of book prices. We shall
introduce just sufficient J as we proceed to solve the problem.
First of all we shall define the list

P=: 20.95 29.50 22.50 13.95 9.50

of book prices. (We might have named the list P r i c e s or
BookPri ees, or some other descriptive name, but have chosen
the name P for brevity.) The list P could contain any number of
prices, and would be defined in the same manner except that
very long lists would be defined as a number of shorter lists
which would be combined to give the final list.

We mentioned earlier that the familiar operations of addition,
sub traction, multiplication and division have been supplemented
in J with a large number of additional primitive operations
usually referred to as "verbs" by analogy with English where the
term refers to the action words in the language. We shall intro-
duce some of these verbs in our solution of the present example.

First of all, the number of books purchased is equal to the
number of items in the list P. This is given by the primitive verb
tally represented by #, so that #p has the value 5, the number of
items in P. To avoid remembering the symbol #, we may define
the simple verb

Ilum= : #
so that num P is 5.

Before proceeding further we might remark thatJ has been
implemented on the computer as an interactive language so that
expressions may be evaluated, and operations, i.e., verbs,
defined immediately on input. Expressions entered by a user are
indented three spaces and any system responses start at the left
margin. For example, the operations performed so far in this
example would appear as follows if input:

P=: 20.95 29.50 22.50 13.95 19.50

#P

5

hum= : #

num P

5

In addition to being used in this manner programs may be
entered and stored for subsequent execution.

The total amount spent on books is given by the stun of the
items in the list P, or

2 0 . 9 5 + 2 9 . 5 0 + 2 2 . 5 0 + 1 3 . 9 5 + 1 9 . 5 0
which is 1 0 6 . 4 o. For convenience, the familiar verb plus + may
be applied to all of the items of a list by deriving from it the verb
+ / so that the expression + / p is equivalent to the previous
expression for the sum of the items of P. As with the primitive
verb # of the previous paragraph, we may define the verb

total= : +/

so that we may convenienfly write t o t a l Pwhichwillhave the
value 2 0 6 . 4 0 .

TheJ verb + / m a y be considered analogous to the familiar
sigma symbol ~ ofconventionalmathematical notation where ~x
or 21x~ represents the sum of the items of the vector or list x. The
sigma notation for a sum may be extended in conventional
mathematical notation ordy to the product so that IIx or IIxl
represents the product of the items of the list x. In J, however,
verbs defined for pairs of numbers may be simply extended to
lists. We shall introduce two of these in our analysis of book
prices.

The verb lesser of<. gives the smaller of two numbers, and,
for exarnple~ 1 3 . 9 5 < . 1 9 . 5 0 is 1 3 . 9 5 , and by extension
<. / gives the smallest item of a list so that < . / P is equal to
1 3 . 9 5 , the smallest book price. Similarly, the expression > . / ,
where >. is the verb/arger of, is equal to 2 9 . 5 0 , the price of the
most expensive book. For convenience, we may define the verbs

rain=: < . /
and

max= : >. /

sothatmin Pis13.95 andmax Pis29.50.

We may summarize the calculations for the book prices with
the verb

summary=: num, total, min, max

so that
summary P

gives the four-item list
5 106.40 13.95 29.50

representing the number of books, total price, minimum price
and maximum price, respectively.

The following Windows form written inJ allows the calcula-
tions to be done without any knowledge oftheJ verbs developed
above or indeed without knowing that J, rather than some other
language, has been used. The user simply enters the prices in the
Prices box and clicks the OK button.

MASeH ~ooo -- VOLUME 30, NUMRKa 3 1 7

Summing rows and columns
In this section we shall consider briefly a type of calculation that
is fundamental to a large class of statistical applications. In a
single dimension the calculation involves finding the sum of a list
of numbers such as the book prices of the last section. In two
dimensions it is simple to state, visualize and solve: find the row
and colunm sums, the so-called marginal sums, in a table of data.
It is the generalization to the various marginal sums in data
arranged in an array of arbitrary dimension which is the difficult
and important problem.

As an example we shall use some data taken from Prindples
and Procedures of Statistics by K. G. D. Steel andJ. H. Torr ie
(McGraw-Hill, 1960) and even then we shall use only part of the
data. The data are the yield in bushels per acre for each of two
varieties of oats and each of three different seed treatments with
four replications of each variety-treatment combination.

T o begin, consider the four observations
62.3 58.5 44.6 50.3

for the first variety-treatment combination. There are the
observations themselves and also their sum 2 1 5 . 7 which is a
measure of the effectiveness of this particular combination.

Now consider the three treatments for the first variety which
are given by the two-dimensional array:

62.3 58.5 44.6 50.3

63.4 50.4 45.0 46 • 7

64.5 46.1 62 .6 50.3

with the rows representing treatments and the columns repre-
senting replications. There are now four different quantities to
calculate: the observations themselves, the row sums

215.7 205.5 223.5

which give a measure of the effectiveness of each of the three
treatments, the column sums

190.2 155 152.2 147.3

which measure the variability between the replications, and the
overall sum 6 4 4 . 7 which gives a measure of the yield of the firs t

variety of oats.
If we now consider the second variety of oats, we have the

data arranged in the three-dimensional array
62.3 58.5 44.6 50.3

63.4 50.4 45.0 46.7

64.5 46.1 62.6 50.3

75.4 65.6 54.0 52.7

70.3 67.3 57.6 58.5

68.8 65.3 45.6 51.0

which has two levels each with 3 rows and 4 columns with the
levels representing the varieties and the rows and columns
representing treatments and replications~ respectively. I f we
count the array itself and the total over all of the data, there will
be 2 * 2 * 2 or 8 different marginal sums to compute. For
example, the sum over the levels

137.7 124.1 98.6 103.0

133.7 117.7 102.6 105.2

133.3 111.4 108.2 101.3

measures the yields of varieties for both treatments and replica-
dons, and the sum over both levels and replications,

463.4 459.2 454.2 ,

measures the treatments.
Ifthis experiment were repeated for two or more methods of

cultivation, then the data would be represented as a four-
d imens iona la r rayandtherewouldbea to ta lo f2 * 2 * 2 * -

2 or 16 different sums that could be computed. The inclusion
of a fifth factor, for example, the repetition of the experiment at
a different location where the soil was different, would give 3 2
marginal sums.

Once the marginal sums, or at least an appropriate selection
of them depending on the experimental design, have been
computed~ it is relatively simple--and we must emphasize the
word "relative]y"--to find the necessary components of the total
variation to test whatever statistical hypotheses are of interest.
The construction of appropriate verbs inJ for the calculation of
any or all marginal sums in arrays ofarhitrary size and dimension
is a problem to which a very considerable amount of attention
has been devoted. T h e resulting verbs have formed the basis of
statistical packages of considerable utility.

We shall make only a few remarks about the use of J to find
marginal sums. T h e four observations for the first variety-
treatment combination may be found very simply as

+/62.3 58.5 44.6 50.3

w h i c h i s eq-ua l t o 2 1 5 . 7 . I fVl represents the three-by-
four array given above for the three treatments and four replica-
dons for the first variety, then the treatment totals are the row
marginal sums + / " 1 Vl or

215.7 205.5 223.5 ~

the replication totals are the column marginal sums + / V 1 or

1 8 APL Quote Quad

190.2 155 152.2 147.3,

and the grand total is the sum over either of these margins which
may be expressed as either + / + / " 1 Vl or + / + / v 1 . For arrays
of more than two dimensions we shall say simply that any
marginal may be found by appropriate rearrangement of the
coordinate axes followed by application of the verb + / b u t we
shall not bother the reader with the details.

Tossing coins
T h e tossing of coins and the rolling of dice, and also the drawing
balls from urns, have long been used to provide examples of
statistical processes. Amongst the best-known examples in the
statistical literature are the experiments of the English biologist
W. F. R. Weldon (1860-1906) which he carried out to illustrate
his statistical arguments. In one he tabulated the results of rolling
twelve dice 4096 times counting as a success the occurrence of
4, 5 or 6. Another set of dice data which is apparently not as well
known as Weldon's was generated by a Swiss scientist Rudolf
Wolf who tabulated the results of 100 000 rolls of a die.

A more recent source of coin-tossing and dice-throwing
examples is Warren Weaver's Lady Luck: The Theory of Proba-
bility (Doubleday, 1963). The author who was in his late 60s
when the bookwas published had had a varied and distinguished
career firs t as a mathematician in academia and later as a scientific
administrator in a number of organizations. (Amongst his many
publications is ,41ice in Many Tongues (The University of Wis-
consin Press, 1964), a delightful discussion of the life of Lewis
Carroll, the writing of the Alice books, and their translation into
over forty languages.) Lady Luck gives an elementary and very
readable introduction to the origins and development of proba-
bility theory and the statistics of chance. Weaver does not avoid
mathematical notation hut introduces and uses it in a manner
which enhances rather than detracts from the exposition. Lady
Luck is a gem of a hook which I have used with great pleasure
ever since I acquired my first copy. It is still in print, and
deserves to remain so for a long, long time.

We might note that Weaver performed his random experi-
ments, not from the actual tossing of coins and the rolling of dice,
but from simulations performed using tables of random numbers,
a common feature ofstatistica] tables at the time he was writing.
For example, a sequence of digits selected arbitrarily from the
table could represent a sequence of coin tosses if an even digit
were considered a head and an odd digit a tail. He mentions the
RAND Corporation's ,4 Million Random Digits with 100 000
Normal Deviates published in 1955 which was reviewed, I
believe, with some diabeliefin TheArew York Times.

In this section we shall discuss only the occurrence of the
number of heads in the repeated tossing of an unbiased coin and
discuss its simulation usingJ. It is well-known that the ratio of
the number of heads to the total number of tosses approaches 0.5
as the number of tosses increases. The following graph shows the
results of one simulation of Y00 tosses:

MARCH 2 0 0 0 - - VOLUME 30 , NUMeER

O . i

O . 5

O . 4

0 . 3

0 . 2

O . l

Rro, portJon of lleads

However, Weaver points out that the difference between the
numbers of heads and tails tends to grow as the number of tosses
increases. This is shown in the second graph representing the
same simulation as that shown in the first one:

11i

] 2

I n

Z

li

4

SO ZDO 1 5 0 ~OO ~Sg ZflO

Thus if one were to bet on the outcome of heads on each toss it is
not altogether certain that one wotdd necessarily break even in a
long series of tosses since one's capital, if modest, could be wiped
out by a long run of tails. This is especially true ffone were using
a martingale system of betting where one doubles one's bet on
each loss and reverts only to the original bet on a win.

The above results may be taken as a warning, if any warning
is necessary, against even the most innocent forms of gambling,
except possibly as an occasional entertainment undertaken with
a knowledge of the odds involved and with a firm resolve to keep
one's expenditures within reasonable limits. However, a discus-
sion of the use of J in the above simulation can give a further

19

understanding of the J language, and we give it here for the
interested reader.

Random numbers may be generated very simplyinJ with the
verb roll ?. For example, the expression ? 2 gives a random digit
0 or I which could be considered to represent the results of one
toss of an unbiased coin where 0 represents tails and 1 heads. As
another example, ? 6 gives an integer picked at random from the
f i rs t six non-negative integers, and could be used to simulate the
roiling of a die with the faces numbered 0, 1, 2 , . . . , 5. If one
prefers the more conventional numbering of faces, one could
introduce the verb > : increment which adds i to its argument,
and use the expression > : ?6 m simulate one roll of a die.

The expression
? 2 2 2 2 2 2 2 2 2 2 2 ,

which could have the value
0 1 0 1 0 0 1 1 1 0,

could represent 10 tosses of an unbiased coin with a head
occurring on the second, fourth, seventh, eighth and ninth
tosses. Therefore, the expression

+/? 2 2 2 2 2 2 2 2 2 2

which gives the sum +/over the expression to the right

gives the number of heads occurnng in 10 tosses of an unbiased

coin. Finally, as a convenience we introduce the verb shape $ to
give a list of arbitrary length all of whose items are equal.
Therefore, the expression 10 $ 2 is the list of ten 2 s given at the
beginning of the paragraph, and the expression + / 910 $ 2 gives
the number of heads in 10 tosses.

We may now return to the coin-tossing example introduced
earlier in the section. Let the number of tosses be N so that N has
the value 300 in the above simulation. For convenience in this
discussion we shall give N the value of 10 by the expression

N= : I0 .

Therefore, 10 coin tosses are given by ?N$ 2 which could
have the value

0 1 0 1 0 0 1 1 1 0

so that the cumulative number of heads is

0 1 1 2 2 2 3 4 5 5 .

InJ this is given conveniendy by the expression
Heads=: +/\?N$2 ,

where the verb + / \ gives the cumulative sum rather than the
final sum given by + / .

To give the toss number we introduce the verb integer i .
which gives a list of non-negative integers, and, for example,
i . 5 i s the list 0 1 2 3 4 . Thus the toss number is given by

TossNum=: >: i. N,

where > : is the verb increment which has already been intro-
duced, and has the value

1 2 3 4 5 6 7 8 9 1 0 .

The ratio of the number of heads to the number of tosses is
Ratio=: Heads % TossNum

whose rounded value is
0 0 . 5 0 . 3 3 3 0 . 5 0 . 4 0 . 3 3 3 0 . 4 2 9 0 . 5

0.556 0.5.

The excess in heads over tails, or rice versa, on any toss is
simply the number of that toss minus the difference between the
number of heads and the number of tails obtained so far. A little
thought will show that this is given by the expression

Tos sNum--2*Heads

which has the value

1 0 1 0 1 2 1 0 _i 0 ,

where * is the verb times. Finally, we introduce the verb magni-
tude I to make the differences non-negative, and we have the
expression

Dill=: I T ° s s N u m - - 2 * H e a d s

which has the value
1 0 1 0 1 2 1 0 1 0

Christmas cards
For some years now I have made my own Christmas cards and
most of the other cards I use during the year. There are several
reasons why I do this: I enjoy making them; I can send my
friends cards which are different; and I save money. All of these
cards have themes rdating to some non-professional topic, and
contain a picture, usually my cat or a Japanese scene, taken by
me or by a friend--all o f m y cards, that is, except one. I would
like to describe this card briefly now.

To begin with we recall from high-school mathematics the
factorial function which gives the product of the successive
positive integers. For example, factorial 3 is 6 which is the
product of the integers 1, 2 and 3, andfadorial 5 is 120 which
is the product of the first five positive integers. Another example
is factorial 5£, the number of arrangements of the 52 cards in a
deck, which is equal to approximately 8 followed by 67 zeros, a
very large number indeed. (I had this statement in an earlier
paper except that I gave the value as 8.1 followed by 67 zeros.
One reader pointed out quite correctly that 8.1 followed by any
number of zeros was stiU 8.1 and was not a large number at all!)

InJ the factorial function is given by thefactorialverb l, and,
for example, ! 3 i s 6 , ! 5 i s l 2 0 , and !i. 9is

! 1 2 3 4 5 6 7 8

which has the value
1 2 6 24 120 720 5040 40320 .

The factorial verb can easily produce very large numbers, and,
for example, ! 10 is 3 . 6 2 f l S e 6 , ! 20 is 2 . 4329e18 , and ! 52
is 8 . 0 6 5 8 2 e 67 as we have seen. The factorial function may be
computed exacdy in J by suffixing the argument with x, and
! 20x is

2432902008176640000 ,
and ! 52x i s

8065817517094387857166063685640376

6975289505440883277824000000000000 ,

an integer with 68 digits.
Some years ago Martin Gardner, that indefatigable writer of

fascinating arfides and books on a variety of mathematical and
scientific topics, published the article "Factorial Oddities" in
Scientific American which was later republished in his Mathe-

2 0 ~PL O~ot~ ~ a

matical Magic Show (Vintage Books, 1978). In this article he
introduced tree factorials as those factorials whose digits may be
arranged in a triangle with one digit in the first row, three in the
second, five in the third, etc. and could with a little imagination
be considered as Christmas trees.

The factorials of the first three positive integers are trivially
tree factorials of a single digit. The first non-trivial tree factorial
is ! 7 or 504 0 which may be displayed as

5

040 .

Gardner's artic]e gives the twenty tree factorials between seven
and one thousand, and displays in triangular form the factorials
for 105 which has 169 digits and for 508 which has 1156 digits.
The second last of these factorials may be computed exactly inJ
by the expression ! 105x which, with a litde reaarangement the
details of which we shaU omit, may be disp]ayed as

1
0 8 1

39675
8240290

900504101
30580032964

9720646107774
902579144176636

57322653190990515
3326984536526808240

339776398934872029657
99387290781343681609728

0000000000000000000000000

/ so far (and a little more)
In this section we shall give examples of the J verbs we have
introduced so far together with a few others. The following rep-
resents a dialogue with the computer where the J expressions
entered by the user are indented automatically three spaces, and
the responses by the computer begin at the left margin. The
comments which follow the expressions and which begin with
ms. are for the reader and are ignored during evaluation.

3 + 5 NB. Plus
8

2 * 3 NB. Times
6

3 - 5 NB. Minus
2

15 % 6 NB. Divided by
2.5

2 + 3 * 4 NB. Precedence
14

2 * 3 + 4
14

(2 * 3) + 4
i0

4 + 2 * 3
i0

% 8
0.125

*- 2.5
6.25

%: 125
ii.1803

MARCH 2000 -- VOLUME ~0~ NUMBER 3

NB. Reciprocal

NB. Square

NB. Square root

6.5 <. 3 ~. Lesser of
3

4 >. i0 NB. Larger of
i0

<: 8 NB. Decrement
7

>: 3.14 NB. Increment
4.14

2.3 + 5 + 3.5 + 6 NB. Sum
16.8

+/2.353.56
16.8

+/\2.3 5 3.5 6 NB. Cum. sum
2.37.310.816.8

w=: 2.3 5 3.5 6
#w NB. Tally

4
+/w

16.8

+l\w
2.37.310.816.8

<./w ~. Minimum
2.3

>./w NB. Maximum
6

1056 ms. Shape
6 6 6 6 6 6 6 6 6 6

71056 NB. Roll
0 4 2 3 1 0 4 4 5 2

>:71056
4 5 1 1 4 5 1 3 1 3

I_3.5 0 4 ms. Magnitude
3.5 0 4

i. i0 NB. Integer
0 1 2 3 4 5 6 7 8 9

a=:i. 34
a

01 2 3
45 6 7
8 9 i0 ii

+/a NB. Column sums
12 15 18 21

+/"i a ms. Row sums
6 22 38

!6 NB. Factorial
720

* / 1 2 3 4 5 6
720

!25
1.55112e25

1 2 5 x
15511210043330985984000000

Additional topics
Teaching Imnguage$
Shortly after I retired I started to study Japanese. There are
several reasons but the main one was probably my interest in
languages. I'm not sure what I expected to learn, but now I can
read and write a litde, speak very little, and understand spoken
Japanese almost not at all. What I didn't expect, though, was to
become interested in the teaching of Japanese. My enjoyment in
seeing how the language is presented helps compensate for my
rather spectacular lack of progress in it.

Most of my Japanese texts teach the language by the telling of
some continuing story which although fictional is intended to be

21

realistic. Let me mention very briefly one of my favourite books.
It is Business Jtzpanese by MichadJenkins and Lynne StrugneU
(NTC Publishing Group, 1993) and is in the well-known
English "Teach Yourself Books" series. The story revolves
around Wajima Trading Company in Tokyo and the British
company Dando Sports which wants to market its sporting
equipment and clothing in Japan through Wajima. We are
introduced to various members of the staff at Wajima and learn
about the company's organization and how business operates in
Japan. In one of the later chapters we have a lecture on quality
control. One of the main characters is Mr. Lloyd, marketing
manager for Dando, who visits Japan on two occasions to draw
up a contract. We follow Mr. Lloyd as he works with the
company and meets some of the staffsocially.

The Japanese hiragana and katakana syllabics are introduced
in Chapter 1 and the kanji (Chinese) characters are introduced
a few at a time very shortly thereafter. The three classes of
characters soon take precendence over the romaji (Roman)
characters used for transliteration. There are twenty chapters and
the story begins in Chapter 2 with an assistant manager of
Wajima checking out of a hotel before returning to Tokyo. Each
chapter has the same format: a summary of the story so far (in
Japanese beginning in Chapter 12), another installment of the
story, in both Japanese characters and in romaji; new vocabulary;
grammatical notes; exercises; a short reading exercise; and a one-
page essay in English on some aspect of Japanese business.
There are several Appendices with grammar summaries, and
English-Japanese andJapanese-Engfish glossaries. From the very
beginning I had the feeling of meeting real Japanese people
working in Japan and living as Japanese people live.

Contrast this introduction toJapanese to the introduction to
a programming language in most programming texts and
adopted in most introductory courses. (There are a few texts
which are exceptions but they do not appear to be very popular.)
The language does not seem to matter. It can be BASIC, Pascal,
C/C++ or Java. The texts and courses are really introductions to
syntax with numerous examples and exercises intended to
illustrate and reinforce grammatical principles. (A colleague once
remarked to me that most introductory programming courses
were as interesting as a course in the conjugation of verbs.)
Furthermore, many of the exercises are artificial and even
juvenile. For example, the first example in Chapter 4 of one of
the Java texts was a program to print either "ho-ho", "he-he" or
"ha-ha"; itwas then modified to print"yuk-yuk". As bad as is the
pedagogy, the writing is even worse in some of the books. Good
scientific and technical writing does exist, of course, but little is
to be found in computing texts.

Of course, expositions of array languages can be poorly
organized and presented too. However, one of the advantages of
these languages is that they may be used almost immediately to
do something useful without first introducing the amount of de-
tail required with conventional Ianguages. (Compare for exam-
ple, the BASIC and J programs for the book-buying example

given earlier in this paper.) Put another way, array languages may
be easily used in the exposition of some subject--statistics, logic,
some branch of arithmetic or algebra, say--without having de tails
of the language intrude on the subject matter. Much of my later
work has been directed toward this end.

My attitudes towards the teaching and use of programming
languages have been influenced by Kenneth Iverson who has
been giving his views in lectures, technical reports and books for
almost forty years. Writing on the 25th anniversary of APL in
1991 in a paper giving one of the first published accounts of J he
wrote "...Although APL has been exploited mostly in commer-
cial programming, I continue Lo believe that its most important
use remains to be exploited: as a simple, precise, executable
notation for the teaching of a wide range of subjects." Implicit in
this statement is the conviction that the details of a language,
whether it beJ or Japanese, should be introduced as needed in
the exposition of the subject whether it be teaching multiplica-
tion tables in a Canadian classroom or introducing the quality
control methods of the American W. Edwards Deming to
Japanese assembly lines.

Remembering the past
When I was an undergraduate I took a required course in the
history of mathematics. I enjoyed the course but I have the
feeling now that I probably wished then that I had been spending
my time on something more practical such as another course in
calculus or one in actuarial mathematics. However looking back
now I realize that this course was one of the most important
courses I took because it awakened my interest in the history of
science, an interest which has never left me but has only in-
creased over the years.

Unfortunately now there appears to he little opportunity for
students to become acquainted with the history of their disci-
pline. A few professors have an appreciation of the development
of their subject and are able to impart this understanding to their
students. However the historical development of a scientific
discipline is not considered to be a marketable ski]] and has been
displaced, if it were ever in the curriculum to begin with, by
topics created by the many interesting and exciring developments
in modem technology. In this section I can only mention a few
of the historical references which I have enjoyed and indicate
some of the newer sources of historical material.

The first book on computers that I bought was Faster tha.n
Thoughtwhich was edited by B. V. Bowden (Pitman, 1953), and
was subtitled "A Symposium on Digital Computing Machines."
It is a collection of twenty-four papers written by persons who
were working in the new field of digital computation, some of
whom axe now considered to he amongst the great pioneers of
computing. The book was reprinted seven times in the first
fifteen years after its publication and still makes enjoyable
reading. The editor contributed a Preface and four chapters, the
most noteworthy in my opinion being the first, "A Brief History
of Computing', which may be read for the pleasure of its literary

22

style alone.
A little book which I enjoyed reading and which I used in my

teaching and research was Electronic Computers by S. H.
Hollingdale and G. C. Tootill (Penguin, 1970). Itwas pubhshed
first in 1965 and revised in 1970 and 1975. This book contains
an excellent account of the history of computing, a discussion of
the design of both analogue and digital computers, a treatment of
computer programming, and finally a discussion of various
applications of computers. Although very dated now, this book
gives an excellent picture of computers and their use in the 1960s
and early 1970s. The two chapters on the history of computing
still make an excellent but bfiefintoducfion to the subject. It is a
pity that a modem version of this admirable tittle book is not
available today.

We might note that Professor Hollingdale published Makers
of Mathemalica (Penguin, 1989) at the age of 79. In the Preface
he remarks that he felt no need to include scholarly footnotes and
that the references were "limited, with a few exceptions, to
sources from my own library which I consulted while writing this
book." A more pleasant way to spend part of one's retirement is
difficult to imagine!

A more scholarly but very readable account of the history of
computing is A History of Gomputing Technology by Michael
Williams of the University of Calory (Prentice-Hall, 1985;
Second Edition, 1997) which describes the development of
arithmetic and calculation tools from ancient Egypt to the
IBM/360. This is an excellent introduction to the subject for the
more serious reader.

Two books have recently come to my attention which pro-
vide aninteresting contrast to the books just discussed. They are
Frontiers of Complexity by Peter Covey and Roger Highfield
(Fawcett Columbine, 1995) and DarzoinAmong the Machines by
George B. Dyson (Perseus Books, 1997). Both books are written
in an engaging style, take a strong historical approach to their
subject, and have many references. The first is an introduction to
the relatively new subject of complex systems and its applications
in mathematics, physics, chemistry, biology and the social
sciences; the second gives the author's idiosyncratic view of the
evolution of computers. Indeed, Covey and Highfield's book
with its over sixty pages of endnotes, ten-page glossary, and
eleven pages of references may be recommended as a superb
introduction to computers for the general reader.

Even this very brief discussion of a few of my favourite com-
puting hooks would be incomplete without some mention of
Alan Turin~ The Enigma of Intelligence by Andrew Hodges,
which was originally published by Burnett Books in 1983 and
has been pubfished since then in at least two paperback editions.
Apparently a revised edition has just been published. One
reviewer described it as "one of the finest pieces of scholarship
to appear in the history of computing." This long biography--
almost 600 pages in the original edition--gives an incisive
account of the life and work of one the pioneers of computing
who was the originator of the eponymous Turing machine, a
theoretical device for studying the limits of computability. It also

MAacn aooo -- VOLUME 50, NuusEa 3

sheds light on the English class and education systems, code-
breaking during the Second World War in which Tufing played
a decisive role, and events leading to the reform of the law
regarding homosexuality in Britain. Incidentally, Turing figures
briefly in Enigma by Robert Harris (Hutchinson, 1995), a
fictional account of code-breaking which as well as being a most
safis~ing thriller gives references which were not available when
Hodges's book first appeared.

About the only published accounts of array languages, apart
from conference proceedings, are in the issue of the IBM,Systems
Journal (Vol. 30, No. 4, 1991) which marked the twenty-fifth
anniversary of APL. Of particular note are Donald McIntyre's
encyclopaedic "Language As an Intellectual Tool: From Hiero-
glyphics to APL" which reads almost as a hymn to Kenneth
Iverson and his work with APL, and what was then the new
dialect J, and Iverson's "A Personal View of APL" which gives
one of the first published accounts of the evolution of APL into
J. Unfortunately there appears to be nothing published on the
development of Nial and its relation to APL andJ.

Persons wishing to learn about the history of computing may
consult the World Wide Web where there is an overwhelming
amount of material available. Here we shall mention only three
sites which because of the many links to other sites will provide
a wealth of information. The Virtual Museum of Computing at

www.museu ms. reading, ac. uk/vmoc/
includes an "eclectic collection of World Wide Web (WWW)
hyperlinks connected with the history of computing and on-line
computer-based exhibits available both locally and around the
world." The Alan Turing Home Page at

www. turing, org. uk/turing/
is maintained by Alan Hodges and was recently judged "one of
the world's top 100 websites." A very interesting source ofinfor-
marion on vintage and modern calculators is given at

www. dotpoint, com/xnumber/ .

Conclusion

The question of the best programming language is similar to the
question of what is the best natural language. EngLish? or Japa-
nese? or German? o r . . . ? The answer depends on who we are,
where we and our families have come from, what we are now
doing, and for whom we are doing it. Regardless of how many
languages we know, there will always be one or two which we
find most useful and with which we are the most comfortable.

I feel the same way about programming languages. I have
used many different ones and have liked them all. However, it is
the array languages--first APL, then Nial and now J - that I have
found the inost appealing intellectually, the most pleasant to use,
and the best able to satisfy most of my computational needs.

All I have tried to accomplish in this paper is to present a
personal view of the devdopment ofprogramminglanguages and
to show my enthusiasm for the three which I have chosen to caU
array languages and to emphasize the importance of keeping the
historical development of one's speciality clearly in mind.

23

As this is my third attempt to explain what I have done with
my professional life, the following quotation, which I have used
before, from one of my favoufite fictional characters, takes on an
added sigafificance:

",$0 there it is" said Pooh, when he had sung this to
himself three h'mes. "It's come different from what I
thought it would, but it's come. Arow I muat go and
sing it to Piglet. " •

Acknowledgements
I wish to thank the following persons for their very helpfid
comments on earlier versions of this paper: Kenneth Iverson,
Howard Peelle, Clifford Reiter, and Alison Smillie.

Keith Smillie is Professor Emeritus of Computing Science at
the Universiby of Alberta, Edmonton, Alberta T6G 2H1. His
e-mail address is "smiUie@cs.ualberta. ca':

Non-$equitur
The] Frisbee -- Courtesy of Cliff Reiter

~ ~ ' ~ ' " : ~ : ' ~ ! ~ i ! ~ i ~ q ~ i:!~:'~ . i

.

APL In the New Millennium
--b 3 Kenneth E. Iverson

Toronto, Ontario

S ZNCZ IBM's APL~36o nEe, AntE AVXUAnLE IN 1966, many
dialects have been developed, and competition has led to
emphasis on their differences, an emphasis reflected in

their distinctive names: APL\1130, APL\360, APLSV, APL2,
SHARP APL, Nial, Dyalog APL, A, APL2000,J, K, and others.

Although natural to healthy competition, the emphasis on
differences has discouraged the sharing of ideas, and still tends
to blind programmers to the ease of moving between dialects, an
ease not shared by programmers unschooled in the core ideas of
APL.

As emphasized in [1], these core ideas were:
• The adoption from Tensor Analysis of a systematic treat-

ment of arrays, in which every entity is an array, and
different ranks lead to scalars, vectors (or lists), matrices
(or tables), and higher-dimensional arrays (or reports).

• Operators (in the sense introduced by Heaviside [2]),
which apply to functions to produce related functions.

In this paper I will review developments in the APL dialects,
emphasizing similarities and the ways in which competing ideas
have been, and could be, shared and adapted to competing sys-
tems. My hope is to encourage the relatively small APL family to
mute their differences, and present a more united face to the
programming world.

Alphabets
Although the particular alphabet, or even the font used, is a most
superficial aspect of a language, it can make a dramatic assault on
a beginning reader--as anyone who first met German in the
Gothic font can testify. First encounters with the unfamiliar
alphabet of the earliest APL has certainly discouraged many, in
spite of its highly-mnemonic character.

At the time of its design there was no adopted standard, and
it seemed reasonable to exploit the newly available IBM S electric
typewriter (with its easily-changed typeball) to design our own
alphabet, and to use the backspace ability of the typewriter to
produce composite (overstruck) characters.

The APL communitywas too small to influence the design of
the now widely-used ASCII alphabet, and our use of special
characters led to a series of unforeseen difficulties that have
significantly inhibited the use of APL:

• When the "glass terminal" provided by the cathode ray
tube supplanted the typewriter, it was incapable of
backspacing to provide the composite characters of APL.

• APL characters were not provided by early printers, and
there was a considerable delay before specialized alpha-
bets could be downloaded to them.

24

