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What is Bayesian Statistics?
Bayesian:  "Evidence about the true state of the world represents a degree of belief"
versus

Frequentist: "Evidence represents only measured frequencies of data"

P(H|D) = P(H) P(D |H) / P(D)

P(H) = # Successes / # Trials

"State of mind" versus "State of the world"
"Subjective"” versus "Objective"

PROBABILITY DOES NOT EXIST
The abandonment of superstitious beliefs about the existence of the Phlogiston,
the Cosmic Ether, Absolute Space and Time, ... or Fairies and Witches was an
essential step along the road to scientific thinking. Probability, too, if regarded
as something endowed with some kind of objective existence, is no less a misleading
misconception, an illusory attempt to exteriorize or materialize our true
probabilistic beliefs. (p. x)

- de Finetti, "Theory of Probability"
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Inverse Probability

Conventional Probability
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The Fall and Rise of Bayesian Statistics

Early Timeline: the genesis and decline of Bayesianism...

Thomas Bayes Pierre-Simon Laplace JSM* ... R.I.LP. Bayes R. A. Fisher
Richard Price George Chrystal (frequentist)
1761 1774 .. 1843 1891 1925. ..

>

* John Stuart Mill denounced probability as "ignorance... coined into science."”

Later Timeline: the rize of Bayesianism

Emile Borel Bruno de Finetti Harold Jeffreys Arthur Bailey L.J. Savage
Frank Ramsey A. M. Turing I. J. Good

1920s 1926/1931 1928/1937 1939 1940 1950 1954
........ },

1763 1774 1843 1891 1825 1931 1937 1939 1940 1950 1954 1970 1980 1990

The Fall and Rise of Bayesianism

R i
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Growth of the Use of Bayesian Methods

Times have changed. Beginning in the early 1990s, there was an abrupt
proliferation of studies using Bayesian methods in mainstream statistics.
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Motivation and Derivation of Bayes's Law

From Jaynes:

Strong syllogism (Aristotle, fourth century BCE):
Major premise: if A is true, then B is true
Minor premise: A is true
Conclusion: therefore, B is true
and its inverse:
Major premise: if A is true, then B is true
Minor premise: B is false
Conclusion: therefore, A is false

Weaker syllogism "epagoge”:

Major premise: if A is true, then B is true

Minor premise: B is true

Conclusion: therefore, A becomes more plausible
and its inverse:

Major premise: if A is true, then B is true

Minor premise: A is false

Conclusion: therefore, B becomes less plausible

From Downey:

Conjunction is commutative:

p(A and B) = p(B and A)

Probability of a conjunction:
p(Aand B) =p(A) p(B|A)

Interchanging A & B:
p(B and A) = p(B) p(A | B)

Therefore,

P(B) p(A|B)=p(A)p(B|A)

Dividing by p(B):
P(A[B)=p(A)p(B|A)
p(B)

Bayes's Law !
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Why Bayes?
The lady tasting tea...
S Choosing Mozart...

sqpitieitas posen Flipping a coin...

e g i ity

i R

et
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How do these cases differ, based only on the -e;fidence?

Prior . Likelihood
*P(H) P(D|H)“
_P(HID) =

P(D) <— Normalizing constant
Posterior
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R , The Problem with Priors

(IS NIGHT, 50 WERE NOT SURE.
TR et e Given 12 coin flips, 3 of which
Wﬂ“:;*‘ﬁ*ﬁm;nﬁ - were talls, how likely is It that
aﬁﬂggpm ToE5 D06 the coin used Is fair?
SR Lt We cannot answer this question without
THE
%ﬁﬂ? _ P\ specifying an underlying probability model.
QEE‘J So, for the case where the experiment was designed to specify 12 coin flips, we
would assume a binomial distribution:
n " 12
L,0)=(,)o*(1—-6)"* =(9)99{1—9)3
However, if the experiment instead had specified that we would continue flipping
until we saw three tails, we would use a negative binomial distribution:
FREQUENTIST STTSTOAN: __ BAYESAN STFTBTIOAN: L,(6) = (’”‘x q 1)9 x(1—-9) = (11)99(1 —8)°
menererm | mwe | e ¢
GALE peOOS T OMADE T HASNT. The two distributions give different results when evaluated:
THAT THE SUN HAS BXPLOCED: /

12 g
| O | e e e
Iﬁ a;= P, 1(X 29)= Z(z“)m(l 6)? = 0.0325
1 £
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Estimating the Probability of a Rare Euent

To estimate the prevalence ©

of an infectious disease in a small city,
we test a sample of 20 people, giving
us the number "y" of infected people
in th'S gmup Binomial Distributions

Possible Priors

& = True Rate =gﬂg

of Infection =020

So, the parameter and sample spaces are

=[0,1] y={01....,20}
Sampling Model
Before testing, let "Y" be the number of infected
people we will determine. For unknown ©, a
reasonable sampling model for Y might be
the binomial(20,0) distribution, so J
1.

Y|© ~ binomial(20,0)

Say we check a sample of 20 people for infection, = =~ Number of infected People in Sample
and we find two cases. Based on this, what is our
estimate of rate of infection for the city as a whole?
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Choosing and Updating a Prior Dlstrlbutlon

Studies from around the country show that infection If Y|© ~ binomial(n,©) and © ~ beta(a,b)

rates in comparable cities range from 0.05 to 0.20, and we observe a value "y" of Y, the

with an average of 0.10. posterior is a beta(a+y, b+n-y) distribution.
Graphing this in R:

We want to build a prior distribution with a a<-2; b<-18; n<-20; y<-0

substantial portion in the range (0.05, 0.20) with curve(dbeta(x, a+y, b+n-y), 1ty=1, lwd=3,

an expected value close to 0.10. from=0, to=1, xlab="Percentage Infected

in Population™, ylab="Probability")
curve(dbeta(x, a, b), add=TRUE, lty=3, lwd=3)
We don't know the actual family of distributions from  legend(e.5, 8, c("p(e|y)”, "p(€)"), 1ty=c(1, 3),
which to draw, so we'll use the beta distribution since iadned, 847

it's flexible and easily interpretable.

A beta distribution is defined by two parameters "a" 2
and "b", for which the expectation © is a/(a+b)
and the most probable value is (a-1)/(a-1 + b-1).

Probability

— piSly)
=== pe)

So,

© ~ beta(2,18)
gives an expectation of 2/20 = 0.10 =~k ey : | |
and a most probable value of 1/18 = 0.06. a0 02 04 05 08 10

Percentage Infected
(example from "A First Course in Bayesian Statistical Methods by Peter D, Hoff) in Population
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0 Markov Chain Monte Carlo
4:, :pOirt'\“ 1 i Finding the Stationary Distribution
. wak | (d‘g?ﬁ?’rmt:by" “m:tn:u':?sl mm& ) 0.5
trans n ma 8.5 e 8.5 ) L}
3@ ] 0.5 ) .5 o
NB. 5-point equiprobable random 2 s W= .3
NB. walk w/wrap: simple ring. e s S i i
i e 8.5 e 8.25 8.25
rw5tme=: ".&a:-.~<;._1 LF,0 : © Se s M2 . W
7] 2.5 © %) 0.5 @ 8.25  @.25 e 0.5
10”8 4 85 b i W oemn onm v
i e 8.5 e 0.5 e ‘9.25 EASIE é-.3?5 ﬁ.ﬂélS 0:15
) 0 .5 © 0.5 @.25  ©.25 0.8625 0.375 0.0625
8.8625 8.25 2.25 ©9.8825 8.375
0.5 © %) 0.5 ©
8.273438 0.148625 ©.222656 8.222656 8.148625
) To
0.140625 0.273438 0,140625 0.222656 0.222656

8.222656 8.148625 ©.273438 8.148625 8.222656

What is the Prnbahility ﬂ'f endjng u_P at 8.222656 0.222656 0.148625 B8.273438 0.148625
ik 9.140625 0.222656 0.222656 0.140625 0.273438
a given node?

getDiag sqriat*:_ ] rwStm@
e.2 8.2 0.2 0.2 0.2
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MCMC continued...
NB. 5-point ring random walk: @<->3 A More Interesting Graph
0. rwStml=: “.&a:-.~<;._1 LF,0 : @

4 7P TNq e  e.336  0.33 0.34 Call L fle
V f ©.5 @ 0.5 0 o PRI b j— L
% d % 0.5 © 8.5 © Models - Principles and Techniques Diffaculty 'u.'f{"_’;’_m_#ff_&’,i

by Daphns Kollsr and Nir Fresedman) ., - M
. .9 0.2 © 0.4 © 0.4 — N e
E |7 |& — = = -
.5 © © 0.5 © ) g o 7}\*3145_3 Cur D
) | 0a" | 005 025 07 \
il g® 05 0.08 0.02] ‘E?'::;-a-; . <0 &l
sample=: 4 : '1 i.~ (?0)<:x{y'"@ 2 EpCee 1oa j5 TN [
llu l|,| ik L&
MCdP3w=: 3 . B gi 01 09
'tm nd stval'=. y NB. Transition mat, # draws, start node i;:;ﬁ:1

states=. (stval) @}nd$e
tm=. +/\"1 tm NB. Form for "sample"

for_ix. }.i.#states do. states=. ((states{~<:ix) sample tm) ix}states end.

(#states)%~<:#/.~(i.#tm),states
NB.EG MCdraw rwS5tml;le5;0

)

MCdraw rwS5tml;le5;@
©.22202 0.16524 ©0.18316 ©.25299 ©.17659
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MCMC-based Methods
Metropolis-Hastings Algorithm Metropolis-Hastings often has sub-optimal
Given X = () convergence or may have other convergence
1. Generate Y; ~ q(y|z™®). problems. However, it provides a good
2 Take baseline solution that is simple to implement

g Y, vith probability p(:‘.’:m Y:) and may be combined with other methods.
X : o ;] ]
2  with probability 1 — p(z®.YV}),

where

’Fr(y) (Ily) Both Metropolis-Hastings and Gibbs sampling
p(z,y) = min #(z) q(y|z) , 1 have many implementations in R as well as
. . in other 1 L

G-lbhﬂ Samp]mg 1n oLner anguagﬂs
For a multi-vanate © with differing distributions for each ©;, do the following steps:
0.  Assign a vector of starting values, S, to the parameter vector:

e=l=g Gibbs sampling is also implemented in a
1. Setj=j3+1. number of packages such as OpenBUGS

: j—1 aj— l j—1 d JAGS.

= E‘:Hmpli {HJ HU H 6‘1 } G Doing Bayesian Data Analysis
3. &!Eﬂlllllt" | H} HJ HJ } A Tutorial with R, JAGS, and Stan

: : X "5,.: @ i
k. Sample (¢ |61, 65,...,00_)). h“;i%«llll
k+1. Return to step 1. i
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Bayesian Networks
g{g;ﬁ g‘g Therefore, according to this scenario,
. ' - -
C | p(S=F) p(S—T} C | p(R=F) p(R=T) it's mure'hke]}{ lihe grass is wet
F| 05 F| 0.8 0.2 because it's raining than because
£ 08 ﬂl / T) 62 O the sprinkler is on.
@ @ p(S=1, W=1) \z p(C=c, S=1, R=r, W=1)
p(S=1|W=1) =
p(W=1) \‘ p(W=1)
\ Gmﬂ = 0.278/0.647 = @.43)
S R/| p(R=F) p(R=T) p(R=1, W=1) I p(C=c, S=s, R=1, W=1)
Ff| 1.0 0.0 p(R=1|W=1) = -
T| 01 0.9 p(W=1) p(W=1)
/TF| 01 0.9 b
/T T| 0.01 0.99 G = 0.456/0.647 =@.7D
ere
A node is independent of its ancestors given its parents. p(W=1) = X p(C=c, S=s, R=r, W=1) = 0.647
™~ However, S and R are conditionally
By the chain ]I][E“&f probability, the joint prubahlhh of all d d h f th ”
the nodes in the graphrakove is ependent because o elr common
P(C. S. R, W) = P(C) * P(ST€).* P(R|C.S) * P(W|C.S.R) child W, so:
By using conditional mdependerbﬁ‘g}lat:nnshlps we can p( S=1 Iw=1, R=‘1) = 0.1945
rewrite this as T

P(C. S, R. W) = P(C) * P(S|C) * P(R|C) * P(W|S.R) It's less likely the sprinkler is on if it's raining,.
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Hidden Nodes

Hidden nodes of a network may be

the outcome in which we are interested
or they may simplify the complexity

of a network, perhaps providing us

A way to reason about causality.

Bayesian network tools: Microsoft's MSBNx,
Matlab's Bayes Net Toolbox, Bayesia. various
packages in R: bnlearn (network structure
learning), deal, ebdbNet.

nodel for Bayvesian nerwork multimodal sensor fusion with weights

» Panof * Followealy p— — —

£ 75 -\--""\. A e
Feature F ( Featre F_, ) { Feature F__ )

- e
Weight W, ) Weight W_,)

= Cluss = HaraToFoliow

e

Hidden variables

P e, F, W, [Pawi,, b W) W,
|ICa||.u¢ | — "ij;_._‘-'““'a ""F;;‘r
\ z i
b DN} parameters eightesd ann eighted
/f’ S ese | Feature WE \_Feature W,
A i o
' 4 o i . .
i 2. Without th , _
E® &) « & amseidnas Pibdod, WE, WF ) P, WE, WE)

S~ depandent -
ONR-1 sty o, e oty bod,

(E.) (5.) —
LEy & \Ez)
T f,‘}‘; o I PR Mol Al )
MTET’ S—— P Y Ubserved Evidence

| LE
= % e | Ity Evidence
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Dynamic Linear Models
DILMs are "state space" models - they characterize a state by
multidimensional set of points and embody a system equation
underlying the observation equation.

Observation equation: Y; = Fi0; + vy, vy ~ N[0, V4,
System equation: 0y = 041 + wy, we ~ N[0, W],
Initial information: (6p |Dg) ~ N[myg, Cy]

A dynamic linear model is characterized
by a set of quadruples

{F, G, V, W}

For each time t where

F. is a known (nxr) matrix; (regression)

Gt is a known (nxn) matrix; (state transition)

V¢ is a known (rxr) variance matrix; (observation variance)

Wt is a known (nxn) variance matrix. (unobserved system variance)
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DLMs Encompass Many Other Types of Models

West and Harrison, in "Bayesian Forecasting
and Dynamic Linear Models", devote a few
pages to demonstrating that a number of
popular forecasting techniques are, in

fact, reducible to some of the more
simply-parameterized DLMs.

Among these are:

(a) Holt's point predictor.
M =aY; + (1-a)M;_q, (t > 1).

(b) Exponentially weighted moving
averages (EWMA).

Given the sequence Y;,...,Y;, the EWMA
with parameteré (D < 6 < 1), is defined as

(c) Brown's exponentially weighted
regression (EWR).

The EWR estimator (Brown, 1962) for
a locally constant mean of Y;,...,Y;, is
defined as the value M; = u that

minimises the discounted sum of squares

t=1
= z,sz(y!_j -
=0
for some given discount factor &,
(0 <@ < 1)

(d) An alternative ARIMA(0,1,1)

mode] representation.

The predictors of Box and Jenkins (1976)
...[t]heir widely applied ARIMA(0,1,1)...
[is a] closed, constant, first-order

polynomial DLM. (DLM {1,1,;W})
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k-Step Forecast Distributions
{YI-HF | Dt} o T:'i.. [mIIQl(k”I

/

and D}rnlmi{: Models X,(k) | D) ~ T
by West and Harrison (Xe(k) | De) i Em*LI(*‘}L

‘/’/;\ with  Quk) =C + EJ;-I Wiy + S,

and Le(k) = K*C, + E;=1 jzwt+k+l-j' + k8¢,

where for j > 0 and scale free variances Wi
WI+J' o 3;“’?_'” .

Consider the DLM specified by

Observation: Y, =y + v, vy ~ N[0, V],
System: fhe = jhe—y T+ Wy, we ~ Tn,_,[0, Wi,
Information: (=1 | Dyey) ~ T, [Me-1{Ce-1],
ni- 151
(#]Dey) ~ G 2452, Mfiat]
Forecast: (e | Dymy) "“Tn:_L[m:-";:Rr.].

(Yf | Dl—-l}"“' Tﬂ. =

with fy =m,_,,

Updating Recurrence Relationships

Qi = R + Se-1:

(#e | Dy) ~ T [y, ),

with  my=m,_, + Aey,
Gt = Ags;.

{‘ﬁlﬂl}“"c[?! mj.!l]r
with  ny=n,_;+1,
31=5:—1+-'!},:—'(-a?:—1),

where

ee=Y - f,, and A = R,/Q..

= | Ot—1lyr1:e-1 ~ N(me_y,Cy—1).

Then the following statements hold.
(i) The one-stev-ahead vredictive distribution of 0,
given yq.¢-1 s Gaussian, with parameters

ar = E(O|y1.4-1) = Gymgy,
g VH{E”yI:E—I] = G;Cg_lg; + W,.

(ii) The one-3 ; ve distribution of Y;
given y;.4-1 is Gaussian, with parameters

V8. (2.8a)

Dynamie Linear

Models in R fi= E{Ytiy‘l:t—l) = Fyay, (2.8b)
by Petris, et al. Q1 = Var(Yily11-1) = FR.F + V. '
(i1t) The filtering distribution of 8, given y;.;
is Gaussian. with parameters
my = E(0:|y1.¢) = aq +R¢F;’Q;Ieh (2.8¢)

Cy = Var(6,lyy4) = Ry — REHQ:I‘F:'!!R'E:
where e, = Y; — f; is the forecast error.
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Signal to Noise Ratio

"A first-order polynomial DLM {1,1,V, ,W, },
constant or otherwise, depends heavily on
choosing appropriate values for the variances,

V; and W, ." (West and Harrison, p.49)

The signal-to-noise ratio corresponds to the
ratio of the two variances V; (observation)
and W, (system). This ratio balances the
model's response between the two systems
of equations, as illustrated in this

example graphed using R's "dlm" package.

irst Aswan dam

H#* NileDLMeg.R: Nile levels example from “Dynamic Linear Models
# in R by Petris et al.

NilePoly <- dlmModPoly(order = 1, dV = 15188, dW = 1468)
unlist(NilePoly); NileFilt <- dlmFilter({Nile, NilePoly)

str{MileFilt, 1); n <- length(Nile)

attach(NileFilt)

dimSwd2var (U.C[[n + 1]], D.C[n + 1, ])

plot(Nile, type="0", col = c("blue™), lwd=2, xlab = ", ylab = “Annual

Average Discharge (m*3/s) of Nile River at Aswan™)
modl <- dlmModPoly(order = 1, dV = 15188, dul = 755)
MileFiltl <- dlmFilter(Nile, modl)
lines (dropFlrst(NLleFiltl$m), lty = "longdash™, lwd=2, col=c({"darkgreen™})
modl <- dlmModPoly{order = 1, dV = 15189, dW = 7558)
WileFilt? ¢- dlmFilter(Nile, mod2)
lines (dropFirst(NileFilt23m), lty = "dotdash™, col=c("red”), lwd=2)
leg ¢- c("data”, paste(“filtered, W/V =", format(c(W(modl)} / V{modl),
Wimed2) / V{mad2)))))
legend ("bottomright™; legend = lag,
col=c("blue™, “darkgreen”, "red”),
lty = c("solld®, "longdash™, “dotdash”),
lwd= c(2,2,2),

pch = e{l, NA, NA), bty = "n")

800 1000 1200 1400
1

of Mile River al Asvwan

Annual Average Discharge {(m*3/s)
€00

Zignal to Noise | —

MILE (ASWAN DAM)

RO ¥
z |
B
32
- rh 'ﬁf‘ﬂﬁ -
E ol .'..p. "l“—""'ﬂ' "H.raf_‘.; ]
Em .

gl o i

" 18E0 1870 1BAD eSO

SR [ T —

b W0 150 18 18N D 1
- fikred, Wi =@. 65 -
filered, W =8. %8

1940

1960
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First-Order Polynomial DLM, DLM summul'y

with Constant Variance V'
Observation: Y, = u, + 1, v ~ N[0, V],
System: e = pe-1 + we, we ~ Tn,_, [0, Wy].
Information: (-1 | Di-1) ~ Ty, [Me—1,Ce-1),

(8| Di-y) ~ G [252, B ],

MultivariateDLM=: 3 : @

tit=. "ft';'Qt';'mt";"Ct';'At"; et’; 'St" NB. Result columns
ni=. #$ff [ delta=. %X:.delta [ 'ff gg Vt Wt y mc delta'=. 7{.y,1
dmo=. a:$~#tit [ nt=. <:np=. Sp=. 1

Forecast: (Mt | Dt=1) ~ Tn,_, [me_1, Re], 'mp Cp'=.(<3Wt)%&.>mc NB. Prior mean and variance: coerce shapes if scalar
(Ye | De1) ~ T, _, [fe, Q] at=. mp
with fe=me1 while. ni»nt do.
RZZ%‘!:}E:H;‘ Yt=. y{~,nt [ Ft=. |:ff{~,nt NB. 1 row mats for conformability
at=. gg+/ . *mp NB. Forecast coeffs based on prior mean
Updating Recurrence Relationships Wt=. (delta*Cp incorporate gg*delta)-Cp incorporate gg NB. Discounting
(e | Do) ~ T [me, Cl, Rt=. Wt4Cp incorporate gg NB. Prior at time t: theta variance
with  my =m_; + Asey, fta. (|:Ft)+/ . * at NB. 1-step forecast emeans
Ch =A% Qt=. Sp4Rt incorporate |:Ft NB. and «variance for forecast Y
(¢ | Do) ~ G[%, 242], et=. Yt-ft NB. 1-step error forecast
with e =y + L nt=. >:np NB. Start posteriors...
5 [ At=. Rt+/ .* Ft+/ . *%.Qt NB. Adaptive coefficients,
S =S+ 50 (ﬁLr - 1)‘ mt=. at+At+/ . * et NB. posterior thetas' means
where e; =Y, —fi, and A; = R/Q:. Ct=. Rt-(|:At)+/ . *At+/ . *Qt NB. and (scale-free) variances
k-Step Forecast Distributions St=. #Sp+(<:(%.Qt) incorporate et)*Sp%nt NB. Scaling factor (p. 118 (d))
(Yesk | Dy) ~ Ty, [my, Q)] Ct=. Ct*st¥Sp
(Xe(k) | De) ~ T, [kmq, Le(k)], dmo=. dmo,&.>|:&.>Ft;Qt;mt;Ct; (] At);et; <5t NB. Save intermediates
with  Qu(k) = C*,LE::J Whse 4+ 8 ) ‘Cp mp Sp np'=. Ct mt st nt NB. Current-»previous for next loop
and Ly(k) = K2Ci+ 15, 7 Wirks1—; + kS, O
where fﬂirl: jj:-~ 0 and st-ﬁjfriei mia;c;aju-';u, ?m:. tit,dno

Wess = SWE,, -
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Books

neral
[Hoff 2009] A First Course in Bayesian Methods:
Peter D. Hoff.
[Jaynes 2003] Probability Theory - The Logic of
Science; E. T. Jaynes.

Bayesian Networks

[Koller 2009] Probabilistic Graphical Models -
Principles and Techniques: Daphne Koller et al.

D}rnamic Linear Models
|Petris 2009] Dynamic Linear Models with R:

Giovanni Petriz et al.

[West 1997] Bayesian Forecasting and Dynamic
Linear Models; Mike West, Jeff Harrison.

Links
A Brief Introduction to Graphical Models and Bayesian
Networks, by Kevin Murphy, 1998; http://www.cs.ubc.ca
[~murphyk/Bayes/bnintro.html
Think Bayes - http://allendowney blogspot.com/2011/10/
my-favorite-bayess-theorem-problems. html
Bayesian Thinking blog - https://learnbayes wordpress.com
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Further Study

Software

See "http://www.cs.ubc.ca/~murphyk/Software/
bnsoft.html” for graphical models software.

The BUGS Project - www.mrc-bsu.cam.ac.uk/
software/bugs/

BUGS (Bavesian inference Using Gibbs Sampling)
for the Bavesian analysis of statistical models.
JAGS - meme-jags.sourceforge net/ : JAGS (Just
Another Gibbs Sampler)for analysis of Bayesian
hierarchical models using MCMC.

OpenBUGS - www.openbugs.net/ : software for
Bayesian inference Using Gibbs Sampling.

R: See "https://cran.r-project.org/web/views/
Bayesian.html" : list of R packages for Bayesian
inference.

Matlab: Various packages - see mathworks.com

J: see jsoftware.com and go to http:/www.meetup
.com/J-Dynamic-Functional-Programmin gi: NY

e

Meetup.

NYGJUG
New York City
J Users Group

devonmcc@gmail.com



