
WHATtS WRONG WITH APL?

Philip S. Abrams

Scientific Time Sharing Corporation
7316 Wisconsin Avenue

Bethesda, MD 20014 USA

APOLOGIA

Throughout history, every time a new
idea has come along there have been many
people quick to criticize it. As often as
not, such criticism has come from detrac-
tots of the idea, and has been motivated
by its threat to older, mere established
beliefs. The Biblical prophets, Socrates,
Jesus, Copernicus, Galileo, Pasteur, Marx,
Darwin, Stravinsky, and countless others,
all experienced resistance to their ideas
for essentially emotional rather than
intellectual reasons.

From its early days as "Iverson
Notation" through its more recent develop-
ment, APL has been the target of heated
discussion. This paper is a criticism of
APL, but I believe, different from others.
I am not a detractor of APL; in fact, I
have been a supporter, developer, and pro-
moter of the language for quite some time.
Therefore, the intention of this review is
not to suggest that since APL has faults
it is worthless. To the contrary, I hope
that these comments will lead to further
improvements of APL and perhaps suggest
some of the directions to consider in the
development of its successors.

This paper could not have been
written much earlier. It is because APL
has come of age, both in the theoretical
domain and in the commercial world, that
it is possible to look at it publicly with
a critical eye.

The discussion that follows is
written for the APL community, present and
future. My wish is that APL "believers"
will accept this analysis in the construc-
tive spirit in which it is offered, and
that those who still do not appreciate the
beauty, elegance, and practical power of
APL will not take these comments out of
the context in which they are presented.

INTRODUCTION

We intuitively expect that in a
"good" programming language, the complex-
ity of a program should be closely related

to the difficulty of the problem it
solves. While this is generally the case
in APL, one often encounters relatively
simple problems whose APL solution is
unusually awkward or complicated. In most
such cases, the source of difficulty is an
inability to express some fundamental
concept or structure in a natural way.
Experience with other programming lan-
guages effectively demonstrates the value
of constructs and facilities that APL does
not have.

There is a fine distinction between
capabilities that are desirable but miss-
ing, and those that are really essential.
Since APL can specify any computable
function, one could argue that nothing is
missing from the language. However, by
the same argument, any computable function
can also be expressed in FORTRAN or by
some Turing machine, so APL is not needed
at all~ In general the approach in this
paper is pragmatic. I consider those
areas "trouble spots" where there is a
large distance from how I think of a
problem to how I must write it in APL.

My goal in this paper is to catalog
these areas of difficulty in APL. Though
some of my preferences may be apparent, it
is not my intention to make specific
proposals here. I do, however, suggest
that the topics considered in this paper
deserve further serious study.

To discuss APLts problems, we must
agree upon what APL is. For the purpose
of this paper, APL is taken to mean "those
ideas and concepts embodied in the
~-'~a~ ~mplemented by APL\360 and APLSV"
(vlz. Gilman and Rose 1974). Note the
emphases in the previous sentence. I
intend not to consider those aspects of
the above-named systems that are clearly
implementation limitations or bugs. For
instance, although A[A]÷V invokes an
error report in APL\360, it is part of APL
as defined above.

In this paper, the primary focus is
the language and not the systems that
support it. This is a bit of a fuzzy
area, as some of what is done by system

con1~ands or system functions ought p~rhaps
to be included in the language proper, as
we shall discuss later.

For the purpose of exposition,
problem areas are classified as follows:

Data structures
Control structures
i~aming, binding, and security
Syntax
Primitives

These areas are by no means orthogonal.
[lany problems of different types are
interrelated, and it is likely that a
solution to one might indeed include
solutions in other areas.

DATA STRUCTURES

Semantically the biggest contribution
of APL to computer science is its superb
treatment of arrays. A simple and
inclusive definition of rectangular arrays
allows all such objects from scalars
through higher ranks to be treated consis-
tently. A harmonious set of primitive
functions and operators makes it possible
to express most transformations of
array-structured data cleanly, concisely,
and unambiguously. The relative ease of
treatment of the semantics of arrays and
their associated primitives reinforces the
belief that the current formulation is a
"right" one (e.g. Abrams 1970, Brown 1971,
Gerhart 1972, [~re 1973).

APL's ability to deal with rectan-
gular homogeneous arrays is unsurpassed.
Uilfortunately, not all data are most
naturally represented in this form. "Real
world" problems often require data struc-
tures that are nonrectangular as well as
no~omogeneous. For example, although a
list of names can be represented as a
character matrix, a vector of character
vectors might be a more convenient
representation.

A definite need exists for tree-
structured data. There have been n~unerous
proposals over the years for extensions to
generalize arrays in this direction (e.g.
Abrams 1966, Brown 1971, Edwards 1973,
Ghandour and Mezei 1973, [lurray 1973). ~
current feeling is that these proposals
are too complicated. Ilost require a lot
of extra machinery in APL to make the tree
structured extensions work right. Many of
these proposals seem to founder in their
treatment of "scalars" -- that is, atomic
objects with no associated structure. The
complexities and the deficiencies in lim-
iting cases strengthen my belief that no
one has yet made the same leap of genius
with respect to generalized structures
thatiIverson made for rectangular arrays.

~he problem of defining the new
structures is the same as that for APL

arrays: to find a simple structure and the
appropriate primitive functions to ~'~I
with it naturally. It is not necessary
that these new structures be extensions or
generalizations of APL arrays. Indeed the
correct structure may bear no relation to
arrays as we know them now in APL.

It has often been suggested that
numbers in APL be considered to be
embedded in the comDlex field rather than
in the field of reals. Such an extension
would, of course, imply similar extension
to primitive functions (McDonnell 1973).
Mow new problems arise for users who are
interested only in reals and who may not
want their results to pop UD in the
complex field. ~at is the best way to
provide new types or extend old types
without forcing them on everybody and
every application?

Other examples of lacking structures
are plentiful: sparse arrays, unordered
sets, nonhomogeneous arrays, lists, files,
graphs, functions, expressions. Is the
true need in APL for a few more primitive
data structures? Or is it rather for an
extensional capability allowing users to
define their own structures?

A defender of the sufficiency of
APL's data structures would argue that
most of the structures discussed above can
easily be represented by rectangular
arrays in APL. In practice, simulating a
structure in APL often leads to dismaying
complexity. Suppose, for instance, that
we wish to deal with LISP-like structures
and primitives. One approach is to write
a complete LISP system, including
statement interpretation, storage, and
name management. Here, all input is via
".quote quad" and I need not even be a~gare
that the LISP system is written in APL. A
second approach is to model the LISP
structures as APL arrays and to build APL
functions correspondinq to the primitives
of LISP. In this case, I have APL
functions with names like CAR and CDR,
which I employ within APL expressions.

Neither of these methods is wholly
satisfactory. The first is preferable in
that the final result behaves exactly as
desired. This, however, is at the price
of a lot of work and a lot of machinery
which duplicates functions inherent to an
APL system. With this approach, it is
impossible to access both the APL and the
LISP data in a single expression. The
name spaces of the two are so isolated
that it is necessary to switch contexts to
get at them both.

On the other hand, the second
approach, while simpler, engenders
problems of name conflicts between the
user's identifiers and those identifiers
used in the modeled primitives. Worse,
there is no simple way to distinguish
objects of the new data type from ordinary

APL arrays. This latter is, of course, an
advantage to the simple creation of such
systems, but provides numerous pitfalls to
even the sophisticated user.

In fact, it would be nice if we
didn't have to simulate LISP structures at
all. What are the properties of LISP data
and primitives that allow them to express
certain algorithms more easily than APL?
How, if at all, might these character-
istics be integrated into APL?

CONTROL STRUCTURES

It is amazing that APL, which is so
rich in data-handling primitive functions,
should be so poor in program structures.
The user can create new functions on data
to handle specialized tasks not done
directly by the primitives. This is not
possible in the area of control. As with
data structures, the fundamental problem
is not the ability to express some algo-
rithm, but the faculty to do so naturally.

Branching. Simple branching to line
numbers is unusually crude. The APL\360
branch is a step backwards from Iverson
Notation, in that the early branch arrows
indicated program structure quite clearly
(see Iverson 1962, Falkoff et al. 1964).
This aspect of the earlier two-dimensional
notation was lost with the linearization
of APL. Unlike other primitive functions
and operators, branching is neither
intuitive nor natural to humans.

The rigidity of APL's control
mechanisms stands in particularly sharp
contrast to its flexibility in dealing
with data. Programmer-defined functions,
with the same syntax as primitive func-
tions, extend data-manipulation abilities
to an extent limited only by the skill and
imagination of ~%e programmer. But how
does one use the branch arrow as a
primitive to build more elaborate or more
congenial control structures?

Some structures, like the BASIC for
statement, can almost be achieved; oth-~s,
such as an interrupt mechanism or an exit
to a specified point in a calling program,
just can't be done at all. Perhaps the
most startling instance of APL's weakness
in control structures is that it is impos-
sible to write a function GOTO , whose
behavior is identical to the primitive
branch, ÷ . Those control structures
that can be built are "fragile", in that
they depend heavily on the programmer's
cooperation and so are really usable only
by the originator in "toy" applications.

The use of line numbers as branch
targets poses a serious threat to the
integrity and thus the reliability of a
program. (The catastrophic consequences
of errors in calculated branches are well-
known to all programmers,) Likewise, the

possibility of branching to any line of a
function destroys all hope of protecting
loops or critical sections from undisci-
plined entry. Computed goto's also com-
plicate program optimiza~.

The use of line numbers, rather than
a more complete and consistent naming
convention for program points, creates a
confusion between lines of a function (an
artifact of typewrlt~terminal usage) and
statements. APL\360 has exactly one
statement per line; it is often desirable
to allow groups of statements on the same
line as well as to permit a statement to
occupy several lines. There is no good
reason to confuse typography with syntax.

Subroutine Call. The limitation of
functions to vale--~ ("adicity") 0, i, and
2 has severe effects. Of course, func-
tions with three or more scalar arguments
can be written to use a single vector
argument, but this trick fails as soon as
one or more of the arguments is a vector
or array. T,~ile there are various other
artifices for simulation of multivalence,
such as the use of global variables or
descriptors, each requires the programmer
to depart from normal function syntax
(e.g. Rose 1971). A consequence of the
valence restriction is the loss of
structure in systems of programs. Such
approaches also make it more difficult to
name actual parameters to a function.

Defined functions cannot be of
variable valence. This facility is
available to primitive functions, such as
+ , but not to user-defined functions.
The lack of this facility makes it impos-
sible to write APL functions that model
APL primitives, which is at least an
embarrassment.

Along with the need for more than ~o
arguments, some functions such as domino
(~) ought perhaps to return multiple
results. Domino now loses half of its
potential useful results -- the residuals
calculated as part of the solution to a
linear system. There seem to be two
options, equally unattractive. With the
first, part of the result would be stored
as a global or system variable, that is
destroyed by each subsequent call of
domino. With the second, the function
would return a complex structure as a
result. This is just as bad; the result,
to be useful, must still be dismembered.
This may be an area in which there is no
"APLish" solution.

Many problems require call by refer-
ence or the equivalent; that is, it should
be possible to pass an unevaluated but
bound name as an actual parameter. The
"execute" function does not satisfy this
need, as we will discuss later.

One of the essential requirements of
the stepwise refinement or top-down

programming technique is that, within any
program or system of programs, all sub-
programs may be viewed as "black boxes".
The choice of local names, subprograms,
programming techniques, and so forth
within a box should not be constrained by
choices made within higher level programs,
and vice versa. One adverse consequence
of APL's elegant name-localizing rule is
that the black-box approach cannot gener-
ally be realized, because names cannot be
made "strictly local" to a program.

Although it hampers subprogram
isolation, APL's localization rule
provides flexibility in communication
between calling and called programs that
is unequaled in most other programming
languages. Further, because the names
accessible by a program are exactly those
accessible at the point of call, APL has
the significant advantage of allowing
subprograms to be tested and observed in
vitro.

The only control mechanism for
getting out of a function is a return to
the point of call. In addition to this
ability, it is sometimes necessary to
perform uplevel transfers of control to a
specified point in the global environment,
as for error returns. Similarly, no
"sideways" control transfer exists; that
is, the subroutine call and return are not
sufficient to model parallel or cooper-
ating processes. This kind of facility is
found in simulation languages in the form
of coroutines.

Ever since Dijkstra denounced the
goto, "structured programming" has become
a popular addition to the jargon of
programmers and language designers. As
mentioned earlier, the simple goto of APL
is insufficient, and there is a clear need
for at least statement grouping, alterna-
tive choice, and repetition. Numerous
proposals (e.g. Kelley 1973, Harris 1973)
have suggested adding what amounts to
ALGOL 60 control primitives to APL. While
I applaud the spirit in which these
extensions have been offered, I believe
that control primitives appropriate to a
"scalar" language like ALGOL or PL/I are
not necessarily those best suited to APL.
Indeed this area, like data structures, is
probably awaiting another revolutionary
jump to provide the right solution.

One of the most serious practical
problems in construction of real systems
and packages is the need to monitor and
control the environment, notably for error
conditions and external events. Shared
Variables (Falkoff and Iverson 1973)
appear to offer a partial solution to a
se~nent of the problem. It is eminently
clear to application designers that some
form of interrupt processing is required.
This kind of facility would permit recog-
nition of and reaction to synchronous
events such as errors, as well as to

asynchronous events such as terminal con-
ditions, timers, the state of concurrent
programs, or other occurrences "external"
to the immediate sequential environment.

NA24ING, BINDING, ~_ND SECURITY

One of the most attractive features
of APL is the elegance and simplicity of
its naming and scope rules. Dynamic
localization and the lack of a distin-
guished set of reserved words allow many
programs to be relatively simple and
straightforward. The addition of the
quad-name conventions of APLSV allows more
direct access and control of environmental
and external variables and processes.
Finally, because reference or label
variables do not exist in the language,
there are no lifetime or alias problems.

This simplicity, while convenient for
small problems, seems to work against the
creation of secure large-scale packages.
By "security" I mean full protection from
modification or subversion by either the
untrained or the malicious user. The
various limitations related to naminq and
binding are all reflected in the question
of security.

There is no way to name, and there-
fore to access, shadowed variables and
functions. Thus one cannot write a
function to put temporarily unused values
on an external medium, such as a file, in
order to reduce space requirements. This
inability would be even more strongly felt
if an interrupt mechanism eMisted which
could react to resource limitations of
this sort.

Contrary to popular belief, the
"execute" function (a) does not provide a
reliable "call by name". ?~at is missing
is the ability to associate with a formal
parameter the name bindings in effect at
the point of call. Name localization can
create anomalies when a name passed in a
character string is shadowed, often
inadvertently.

VN IDENT X
DEFINE VARIABLE NAMED IN RIGHT
ARGUMENT AS IDESTITY MATRIX

IX.'÷(IN)o.=IN'
?

called: 100 IDENT 'N'

This name conflict can be circumvented
only by enforcing n~ing conventions -- an
approach that is impractical unless the
program's only user is its creator.

A program's local identifiers cannot
be made "invisible" to the user. Like-
wise, it is not possible to meld a program
and its subprograms into an indivisible
object. Other languages overcome these
problems through use of compilers (which

purge most names from the object program)
and loaders or linkage editors (which
combine programs and eliminate most
remaining names). The programmer can
control the unification of a package by
specifying entry points, external names,
control sections, and so forth. APL's
need for similar facilities has been
recognized by others (Ryan 1973, Puckett
1974) and must be pursued further.

The extensions of APLSV allow parts
of the environment to be localized within
functions. In some cases w such as printer
width, this is too restrictive, as the
width is more properly associated with a
terminal session than with a function or
workspace. In other cases, notably index
origin, the APLSV localization is too
weak. Rather than treat index origin as a
local variable which must be initialized
at each execution, its value should be
settable when its locality is declared.
This approach would also eliminate the
need for "IMPLICIT ERROR".

~ explicit ability to deal with
names and their values would allow ration-
alization of the workspace. With such
functional capabilities in the language, a
workspace becomes simply a universe of
discourse -- that is, a set of identifiers
bound with their values or definitions.
What are now system-related mechanisms,
like "LOAD" and "SAVE" would become simple
APL functions to switch context and bind
names to objects. Aside from simplifi-
cation and unification, SUCh mechanisms
would make it possible to separate naming
problems from storage considerations.
They would also allow much of what is
"mysterious" about APL systems to be
described and extended in APL.

Naming and binding are closely tied
to control structures. The inability to
define lexically local functions or
strictly local names are examples.

In summary, the problems with naming
in APL seem to boil down to two essen-
tials. First there is no explicit name
type in APL. Since they are not part of
the universe of discourse, names cannot be
manipulated, or described, directly. One
of the best examples of this is in the
"Formal Description of APL" (Lathwell and
Mezei 1971) t where the authors were forced
to ignore assignment, as such a descrip-
tlon would require a way to discuss names
and associated values. The second basic
problem is that there is no way to control
the scope of names, either in time (dyna-
mic) or in context (lexical). Primitive
facilities in this area would make
"execute" more useful and would help in
the rationalization of function
definition. The ablllty to deal with
names and scope would go a long way toward
permitting the creation of secure
functlons ~id applications.

SYNTAX

Compared to other popular programming
languages, APL has a simple and uniform
syntax. Although rich in primitive func-
tions, APL has simple precedence rules
which are a boon to novice and experienced
programmers alike. A straightforward
approach to function precedence is impera-
tive for APL, since the language has
historically grown by extending the func-
tion set rather than by adding new syn-
tactic statement types. Indeed there are
but two types of executable statements in
APL, in contrast to the large number found
in other current languages.

Paradoxically, it is this very
simplicity of APL syntax that stands in
the way of well-designed extensions to the
language. It is difficult or impossiDle
to introduce new constructs and stay
within APL syntax. Try, for example, to
design extensions for functions of more
than two arguments, or more than one
result; or for operators or other new
control structures; and retain consistency
with existing syntax rules.

A new capability must either conform
to the procrustean syntax of monadic and
dyadic functions, or must escape from APL
syntax entirely. One popular approach has
been to enclose deviant material in
quotes, as with the left arguments to
formatting functions such as A~T or ~ .

The function header is used to
describe properties of a function -- its
name, syntax, names of local identifiers
-- that pertain throughout the function's
execution. Elsewhere in this paper I have
suggested the need to describe other
properties of functions, such as index
origin, strict locality of n~T.es, and
multivalence. The current header syntax
is inadequate for describing these
additional properties.

The issue of function precedence in
APL is the single most controversial,
e/notion-laden, and misunderstoo~ aspect of
the language. The common confuslon of
function precedence with order of
execution has thoroughly mu--6~dq~e~-these two
simple but essential notions. In the
expression AxB+C , function precedence
indicates that A and B+C are the
operands of the function x . An "order
of execution" rule, for which this is
commonly mistaken, would also require that
B+C be evaluated before A -- surely a
curious requirement for × , a commutative
function~

APL's right-associativity rule is
useful primarily because it tends to
reduce the number of parentheses required
to write an expression, although it does
not~necessarily minimize parentheses.
Right rather than left associativlty was
chosen for APL because of the right

association of monadic functions with
their arguments (Iverson 1966). Note,
however, that left associativity might
engender fewer parentheses. There is,
however, nothing sacrosanct about
associating arguments from only one end of
an expression. For instance, one useful
avenue to explore would be the use of
short scope of right arguments, as
described by More (1973). His dot
notation, well-established in symbolic
logic, might also be useful for minimizing
parentheses in complex expressions.

If all APL functions simply trans-
formed their arguments without modifying
the global state, there would be no need
to discuss order of evaluation. This
order could then be any that respects the
rules of association of functions with
arguments. The existence of side effects
(primarily through assignment) is what has
made it imperative to consider order of
execution of APL programs.

The most popular argument in favor of
a specified order of execution, in parti-
cular "right to left", is that it allows
the embedding of assignments to variables
used "later" in an expression. On the
other side, the cult of "one-liners" has
demonstrated how easy it is to write
incomprehensible expressions using
internal assignment. Uncharitable critics
as well as overzealous practitioners have
concentrated overmuch on this potential of
the language (e.g. Dijkstra 1972).
Stylistically, this kind of progra~m%ing is
complex to reade to write, and to modify
(Abrams 1973). Because of the side
effects, such statements also tend to be
difficult to debug, as they cannot be
restarted. Having no special order of
execution, beyond that required to respect
association, would discourage this
practice. Thus we would require
evaluation of arguments before their
passage to a function, but no further
order would be specified.

The other principal argument against
defining an order of evaluation is that it
makes it much more difficult to write
highly efficient APL processors. If the
sole rule is to evaluate arguments to a
function before invoking the function, the
processor has more liberty to permute
operation order and to do multiple
operations in parallel. In the absence of
side effects, there is no ambiguity.

P~IITIVES

As I noted earlier, the main
importance of APL is its development of
the use of rectangular arrays through a
complete and generally consistent set of
primitive functions and operat~.~. Their
amenability to formal treatment suggests
that the match between data structure and
primitives is an unusually good one.

The definitions of some primitive
functions are questionable. For instance,
limiting cases of division and exponen-
tiation (0÷0 and 0-0) do not agree
with traditional mathematics. The
inclusion of domino and the circular
functions raises q~estions about what
should and what should not be included in
APL as primitive functions. Although
useful in some application domains, these
functions are relatively specialized and
are much less fundamental than, say,
indexing. Similarly, the ad hoc defini-
tion and scant'powers of t~e w
formatting function make its inclusion
dubious. In the above cases, it miaht be
more appropriate either to include more
primitive constructs from which these
functions might be defined conveniently,
or to find more general functions from
which these fall out as special cases.

Some functions are not yet general
enough. Both expansion and "overtake"
would be more useful if it were possible
to specify an arbitrary fill sequence.
When using expansion, one often regrets
the lack of the "mesh" function of early
versions of APL (Iverson 1962). The
"take" function is overburdened in that it
perf6rms both selection and extension,
depending on the value of its left
argument. It might be preferable to
separate the two functions.

There is a need for general string
manipulation primitives. In particular,
search and substitution functions would be
useful. The inability to manipulate sub-
script lists is a problem of both data
structures and primitives that lack.

The dyadic iota function has its
arguments in the wrong order. Presently,
the "universe" to be searched is the left
argument, as is true of the characteristic
function, e • Furthermore, the universe
is the argument most likely to be an
expression. If arguments were inter-
changed, a pair of parentheses could often
be eliminated and readability improved.
For example, contrast (STRING~' t)~1
(present form) with I~STRING~' t
(proposed form). With this approach, the
shape of the result is the same as the
shape of the function's left argument, as
is now tz~e for ~ •

No criticism of APL primitives would
be complete without questioning the use of
subscripts on functions and operators.
Why should subscripts used here follow the
index origin? The use of nonintegral
subscripts in lamination is not only
confusing and ugly, but also demolishes
the notion that subscripts on primitives
are somehow "indexing" something, and so
should follow the rules for array indices.
Finally, that reduction on a scalar argu-
ment works only if the subscript is elided
and not at all if it is written explicitly
is almost comical.

CONCLUSION

The casual reader of this paper may
get the impression that APL is so fraught
with problems as to be practically
useless~ To the contrary, though it has
faults and failings, APL remains an
unusually clean, consistent, and practical
language.

We must ask, however, how much
further can the development and extension
of APL go? At some point, new features
and extensions appear "grafted on". It
becomes harder and harder to design
elegant, natural extensions that harmonize
with the existing structure. To date,
most proposed generalizations of APL have
raised at least as many new problems as
they have purported to remedy.

Perhaps this effect reaffirms the
elegance and solid good design of the base
language. What sculptor would attempt to
improve on Michelangelo's "David"?
Thinking in terms of extensions and
generalizations, we must pose a multitude
of questions. To what extent do the
decisions of the past, right or wrong, and
the hypotheses upon which APL is built,
constrain further development of the
language?

The danger of not recognizing when to
stop adding features to a language has
already been demonstrated by the history
of FORTRAN, BASIC, COBOL, and PL/I. To
what extent are we willing (or unwilling)
to change or even question earl~-design
decisions and assumptions in order to
maintain compatibility? Is it worse to
continue further extensions and adding new
features and try to pretend that the
result is still APL? When is APL not APL?

Maybe the wisest strategy is to leave
well enough alone and stop tampering with
the language. RecognizingAPL's strengths
and shortcomings, perhaps the next step is
to begin anew from fundamentals to create
a language that is to APL as APL is to
FORTRAN.

Is there anyone who can perform the
same leap of genius which gave rise to
APL? Are we ready for this next step when
it happens? Or has APL conservatism
blinded us to new ideas?

POST SCRIPTUM

A lot of questions are raised in this
paper. I hope readers will be encouraged
to seek answers. APL could not have been
created, nurtured, and brought to maturity
wlthout a certain singlemindedness of pur-
pose on the part of many devoted people.
It is, in large part, the transformation
of this dedication of early workers into
parochlalism in others which prompted me
to write this paper.

The opinions expressed here ~re
wholly my own, and may not reflect the
position of any other person or organ-
ization. I wish to thank the several
friends and colleagues who have helped me
to refine my thoughts and words to this
stage. A special appreciation goes to
Lawrence M. Breed for many fruitful dis-
cussions that contributed substantially to
the form and the content of the work
presented here.

REFERENCES

P. s. Abrams, An Interpreter for "Iverson
Notation"7--Tech. Rep~. CS-~, ~ r
Science Dept., Stanford University
(1966)

P. S. Abrams, An APL Machine, PhoD.
Dissertatl-onT--St~----~University
(1970)

P. S. Abrams, "Program Writing, Rewriting,
and Style", APL Congress 73 (1973)
1-8

J. A. Brown, A Generalization of APL,
Ph.D. DiSsertation, Syracuse
University (1971)

O.-J. Dahl, E. W. Dijkstra, and
C. A. R. Hoare, Structured
Programming, London: Academic Press
(1972)

E. U. Dijkstra, "The Humble Programmer",
Communications of the ACM, 15, 10
{October 1972) ~9--~6

E. M. Edwards, "Generalized Arrays (Lists)
in APL", APL Conqress 73 (1973)
99-105

A. D. Falkoff and K. E. Iverson, APLSV
User's Manual, Philadelphia:--l~
Tg~73T - -

S. L. Gerhart, Verification of APL
Pro@rams, Ph.D. Disserta-tio--~,
Carnegie-Mellon University (1972)

Z. Ghandour and J. E. Mezei, "General
Arrays, Operators and Functions", IBM
Journal of Research and Development,
~ ~ y ~ 3 ~ 5 2

L. Gilman and A. J. Rose, APL - An
Interactive Approach,'-~w Y~k: John
Wiley & Sons, Inc~ (1974)

P. Gjerl~v, H. J. Helms, and J. Nielsen,
APL Congress 73, Amsterdam:
N--~t~-H611and--Publlshing Co. (1973)

L. R. Harris, "A Logical Control Structure
for APL", APL Congres s 73 (1973)
Z U 3 - ~ I O - -

K. E. Iverson, ~ Pro@rammin~ Language, New
York: John Wiley & Sons, Inc. (1962)

K. E. Iverson, Elex:-~entary Functions: An
Al~orit~-~c Approach, C.'hicago: --
ocaeI~ce ~esearch Associates, Inc.
(1966)

R. A. Kelley, "APLCg~L, I~ Experimental
Structured Programming Languaqe", IB?[
Journal of Research and DeVelO~ment,
YTTq-TJ~ua~ ±973) -~-73

II. Lath,ell, and J. E. Mezei, "A Formal
Description of f~L", Colloque APL,
Paris: IRIA (1971)

D. ~,cCracken, "~%ither APL", Datamation,
16, iI (15 September 1970') 53-55

E. E. ~icDonnel!, "Complex Floor", APL
Congress 73, (1973) 299-305

T. ~[ore Jr., "Axioms and ?heorems for a
Theory of Arrays", IBl4 Journal of
nesearch and Development, 17, 2--
(I~arch 197~J~135-175

2. C. [iurray, "On Tree Structure
Extensions to the APL Lanwuage", APL
Congress 73, (1973) 333-33~

T. H. Puckett, "Improved Security in APL
Application Packages", Proceedings of
~%e Sixth International APL Users'
Conference, Coast Commun~~ge
uistrict (1974) 438-441

A. J. Rose, "More About Hulti-Adic
Fu-nctlons", APL Quote Quad, ~, 6
(Ilarch 1971)-~-4--

J. L. ~yan, "Secure Applications Within an
APL Environment", APL Congress 73
(1973) 407-414

