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APOLOGIA 

Throughout history, every time a new 
idea has come along there have been many 
people quick to criticize it. As often as 
not, such criticism has come from detrac- 
tots of the idea, and has been motivated 
by its threat to older, mere established 
beliefs. The Biblical prophets, Socrates, 
Jesus, Copernicus, Galileo, Pasteur, Marx, 
Darwin, Stravinsky, and countless others, 
all experienced resistance to their ideas 
for essentially emotional rather than 
intellectual reasons. 

From its early days as "Iverson 
Notation" through its more recent develop- 
ment, APL has been the target of heated 
discussion. This paper is a criticism of 
APL, but I believe, different from others. 
I am not a detractor of APL; in fact, I 
have been a supporter, developer, and pro- 
moter of the language for quite some time. 
Therefore, the intention of this review is 
not to suggest that since APL has faults 
it is worthless. To the contrary, I hope 
that these comments will lead to further 
improvements of APL and perhaps suggest 
some of the directions to consider in the 
development of its successors. 

This paper could not have been 
written much earlier. It is because APL 
has come of age, both in the theoretical 
domain and in the commercial world, that 
it is possible to look at it publicly with 
a critical eye. 

The discussion that follows is 
written for the APL community, present and 
future. My wish is that APL "believers" 
will accept this analysis in the construc- 
tive spirit in which it is offered, and 
that those who still do not appreciate the 
beauty, elegance, and practical power of 
APL will not take these comments out of 
the context in which they are presented. 

INTRODUCTION 

We intuitively expect that in a 
"good" programming language, the complex- 
ity of a program should be closely related 

to the difficulty of the problem it 
solves. While this is generally the case 
in APL, one often encounters relatively 
simple problems whose APL solution is 
unusually awkward or complicated. In most 
such cases, the source of difficulty is an 
inability to express some fundamental 
concept or structure in a natural way. 
Experience with other programming lan- 
guages effectively demonstrates the value 
of constructs and facilities that APL does 
not have. 

There is a fine distinction between 
capabilities that are desirable but miss- 
ing, and those that are really essential. 
Since APL can specify any computable 
function, one could argue that nothing is 
missing from the language. However, by 
the same argument, any computable function 
can also be expressed in FORTRAN or by 
some Turing machine, so APL is not needed 
at all~ In general the approach in this 
paper is pragmatic. I consider those 
areas "trouble spots" where there is a 
large distance from how I think of a 
problem to how I must write it in APL. 

My goal in this paper is to catalog 
these areas of difficulty in APL. Though 
some of my preferences may be apparent, it 
is not my intention to make specific 
proposals here. I do, however, suggest 
that the topics considered in this paper 
deserve further serious study. 

To discuss APLts problems, we must 
agree upon what APL is. For the purpose 
of this paper, APL is taken to mean "those 
ideas and concepts embodied in the 
~-'~a~ ~mplemented by APL\360 and APLSV" 
(vlz. Gilman and Rose 1974). Note the 
emphases in the previous sentence. I 
intend not to consider those aspects of 
the above-named systems that are clearly 
implementation limitations or bugs. For 
instance, although A[A]÷V invokes an 
error report in APL\360, it is part of APL 
as defined above. 

In this paper, the primary focus is 
the language and not the systems that 
support it. This is a bit of a fuzzy 
area, as some of what is done by system 



con1~ands or system functions ought p~rhaps 
to be included in the language proper, as 
we shall discuss later. 

For the purpose of exposition, 
problem areas are classified as follows: 

Data structures 
Control structures 
i~aming, binding, and security 
Syntax 
Primitives 

These areas are by no means orthogonal. 
[lany problems of different types are 
interrelated, and it is likely that a 
solution to one might indeed include 
solutions in other areas. 

DATA STRUCTURES 

Semantically the biggest contribution 
of APL to computer science is its superb 
treatment of arrays. A simple and 
inclusive definition of rectangular arrays 
allows all such objects from scalars 
through higher ranks to be treated consis- 
tently. A harmonious set of primitive 
functions and operators makes it possible 
to express most transformations of 
array-structured data cleanly, concisely, 
and unambiguously. The relative ease of 
treatment of the semantics of arrays and 
their associated primitives reinforces the 
belief that the current formulation is a 
"right" one (e.g. Abrams 1970, Brown 1971, 
Gerhart 1972, [~re 1973). 

APL's ability to deal with rectan- 
gular homogeneous arrays is unsurpassed. 
Uilfortunately, not all data are most 
naturally represented in this form. "Real 
world" problems often require data struc- 
tures that are nonrectangular as well as 
no~omogeneous. For example, although a 
list of names can be represented as a 
character matrix, a vector of character 
vectors might be a more convenient 
representation. 

A definite need exists for tree- 
structured data. There have been n~unerous 
proposals over the years for extensions to 
generalize arrays in this direction (e.g. 
Abrams 1966, Brown 1971, Edwards 1973, 
Ghandour and Mezei 1973, [lurray 1973). ~ 
current feeling is that these proposals 
are too complicated. Ilost require a lot 
of extra machinery in APL to make the tree 
structured extensions work right. Many of 
these proposals seem to founder in their 
treatment of "scalars" -- that is, atomic 
objects with no associated structure. The 
complexities and the deficiencies in lim- 
iting cases strengthen my belief that no 
one has yet made the same leap of genius 
with respect to generalized structures 
thatiIverson made for rectangular arrays. 

~he problem of defining the new 
structures is the same as that for APL 

arrays: to find a simple structure and the 
appropriate primitive functions to ~'~I 
with it naturally. It is not necessary 
that these new structures be extensions or 
generalizations of APL arrays. Indeed the 
correct structure may bear no relation to 
arrays as we know them now in APL. 

It has often been suggested that 
numbers in APL be considered to be 
embedded in the comDlex field rather than 
in the field of reals. Such an extension 
would, of course, imply similar extension 
to primitive functions (McDonnell 1973). 
Mow new problems arise for users who are 
interested only in reals and who may not 
want their results to pop UD in the 
complex field. ~at is the best way to 
provide new types or extend old types 
without forcing them on everybody and 
every application? 

Other examples of lacking structures 
are plentiful: sparse arrays, unordered 
sets, nonhomogeneous arrays, lists, files, 
graphs, functions, expressions. Is the 
true need in APL for a few more primitive 
data structures? Or is it rather for an 
extensional capability allowing users to 
define their own structures? 

A defender of the sufficiency of 
APL's data structures would argue that 
most of the structures discussed above can 
easily be represented by rectangular 
arrays in APL. In practice, simulating a 
structure in APL often leads to dismaying 
complexity. Suppose, for instance, that 
we wish to deal with LISP-like structures 
and primitives. One approach is to write 
a complete LISP system, including 
statement interpretation, storage, and 
name management. Here, all input is via 
".quote quad" and I need not even be a~gare 
that the LISP system is written in APL. A 
second approach is to model the LISP 
structures as APL arrays and to build APL 
functions correspondinq to the primitives 
of LISP. In this case, I have APL 
functions with names like CAR and CDR, 
which I employ within APL expressions. 

Neither of these methods is wholly 
satisfactory. The first is preferable in 
that the final result behaves exactly as 
desired. This, however, is at the price 
of a lot of work and a lot of machinery 
which duplicates functions inherent to an 
APL system. With this approach, it is 
impossible to access both the APL and the 
LISP data in a single expression. The 
name spaces of the two are so isolated 
that it is necessary to switch contexts to 
get at them both. 

On the other hand, the second 
approach, while simpler, engenders 
problems of name conflicts between the 
user's identifiers and those identifiers 
used in the modeled primitives. Worse, 
there is no simple way to distinguish 
objects of the new data type from ordinary 



APL arrays. This latter is, of course, an 
advantage to the simple creation of such 
systems, but provides numerous pitfalls to 
even the sophisticated user. 

In fact, it would be nice if we 
didn't have to simulate LISP structures at 
all. What are the properties of LISP data 
and primitives that allow them to express 
certain algorithms more easily than APL? 
How, if at all, might these character- 
istics be integrated into APL? 

CONTROL STRUCTURES 

It is amazing that APL, which is so 
rich in data-handling primitive functions, 
should be so poor in program structures. 
The user can create new functions on data 
to handle specialized tasks not done 
directly by the primitives. This is not 
possible in the area of control. As with 
data structures, the fundamental problem 
is not the ability to express some algo- 
rithm, but the faculty to do so naturally. 

Branching. Simple branching to line 
numbers is unusually crude. The APL\360 
branch is a step backwards from Iverson 
Notation, in that the early branch arrows 
indicated program structure quite clearly 
(see Iverson 1962, Falkoff et al. 1964). 
This aspect of the earlier two-dimensional 
notation was lost with the linearization 
of APL. Unlike other primitive functions 
and operators, branching is neither 
intuitive nor natural to humans. 

The rigidity of APL's control 
mechanisms stands in particularly sharp 
contrast to its flexibility in dealing 
with data. Programmer-defined functions, 
with the same syntax as primitive func- 
tions, extend data-manipulation abilities 
to an extent limited only by the skill and 
imagination of ~%e programmer. But how 
does one use the branch arrow as a 
primitive to build more elaborate or more 
congenial control structures? 

Some structures, like the BASIC for 
statement, can almost be achieved; oth-~s, 
such as an interrupt mechanism or an exit 
to a specified point in a calling program, 
just can't be done at all. Perhaps the 
most startling instance of APL's weakness 
in control structures is that it is impos- 
sible to write a function GOTO , whose 
behavior is identical to the primitive 
branch, ÷ . Those control structures 
that can be built are "fragile", in that 
they depend heavily on the programmer's 
cooperation and so are really usable only 
by the originator in "toy" applications. 

The use of line numbers as branch 
targets poses a serious threat to the 
integrity and thus the reliability of a 
program. (The catastrophic consequences 
of errors in calculated branches are well- 
known to all programmers,) Likewise, the 

possibility of branching to any line of a 
function destroys all hope of protecting 
loops or critical sections from undisci- 
plined entry. Computed goto's also com- 
plicate program optimiza~. 

The use of line numbers, rather than 
a more complete and consistent naming 
convention for program points, creates a 
confusion between lines of a function (an 
artifact of typewrlt~terminal usage) and 
statements. APL\360 has exactly one 
statement per line; it is often desirable 
to allow groups of statements on the same 
line as well as to permit a statement to 
occupy several lines. There is no good 
reason to confuse typography with syntax. 

Subroutine Call. The limitation of 
functions to vale--~ ("adicity") 0, i, and 
2 has severe effects. Of course, func- 
tions with three or more scalar arguments 
can be written to use a single vector 
argument, but this trick fails as soon as 
one or more of the arguments is a vector 
or array. T,~ile there are various other 
artifices for simulation of multivalence, 
such as the use of global variables or 
descriptors, each requires the programmer 
to depart from normal function syntax 
(e.g. Rose 1971). A consequence of the 
valence restriction is the loss of 
structure in systems of programs. Such 
approaches also make it more difficult to 
name actual parameters to a function. 

Defined functions cannot be of 
variable valence. This facility is 
available to primitive functions, such as 
+ , but not to user-defined functions. 
The lack of this facility makes it impos- 
sible to write APL functions that model 
APL primitives, which is at least an 
embarrassment. 

Along with the need for more than ~o 
arguments, some functions such as domino 
(~) ought perhaps to return multiple 
results. Domino now loses half of its 
potential useful results -- the residuals 
calculated as part of the solution to a 
linear system. There seem to be two 
options, equally unattractive. With the 
first, part of the result would be stored 
as a global or system variable, that is 
destroyed by each subsequent call of 
domino. With the second, the function 
would return a complex structure as a 
result. This is just as bad; the result, 
to be useful, must still be dismembered. 
This may be an area in which there is no 
"APLish" solution. 

Many problems require call by refer- 
ence or the equivalent; that is, it should 
be possible to pass an unevaluated but 
bound name as an actual parameter. The 
"execute" function does not satisfy this 
need, as we will discuss later. 

One of the essential requirements of 
the stepwise refinement or top-down 



programming technique is that, within any 
program or system of programs, all sub- 
programs may be viewed as "black boxes". 
The choice of local names, subprograms, 
programming techniques, and so forth 
within a box should not be constrained by 
choices made within higher level programs, 
and vice versa. One adverse consequence 
of APL's elegant name-localizing rule is 
that the black-box approach cannot gener- 
ally be realized, because names cannot be 
made "strictly local" to a program. 

Although it hampers subprogram 
isolation, APL's localization rule 
provides flexibility in communication 
between calling and called programs that 
is unequaled in most other programming 
languages. Further, because the names 
accessible by a program are exactly those 
accessible at the point of call, APL has 
the significant advantage of allowing 
subprograms to be tested and observed in 
vitro. 

The only control mechanism for 
getting out of a function is a return to 
the point of call. In addition to this 
ability, it is sometimes necessary to 
perform uplevel transfers of control to a 
specified point in the global environment, 
as for error returns. Similarly, no 
"sideways" control transfer exists; that 
is, the subroutine call and return are not 
sufficient to model parallel or cooper- 
ating processes. This kind of facility is 
found in simulation languages in the form 
of coroutines. 

Ever since Dijkstra denounced the 
goto, "structured programming" has become 
a popular addition to the jargon of 
programmers and language designers. As 
mentioned earlier, the simple goto of APL 
is insufficient, and there is a clear need 
for at least statement grouping, alterna- 
tive choice, and repetition. Numerous 
proposals (e.g. Kelley 1973, Harris 1973) 
have suggested adding what amounts to 
ALGOL 60 control primitives to APL. While 
I applaud the spirit in which these 
extensions have been offered, I believe 
that control primitives appropriate to a 
"scalar" language like ALGOL or PL/I are 
not necessarily those best suited to APL. 
Indeed this area, like data structures, is 
probably awaiting another revolutionary 
jump to provide the right solution. 

One of the most serious practical 
problems in construction of real systems 
and packages is the need to monitor and 
control the environment, notably for error 
conditions and external events. Shared 
Variables (Falkoff and Iverson 1973) 
appear to offer a partial solution to a 
se~nent of the problem. It is eminently 
clear to application designers that some 
form of interrupt processing is required. 
This kind of facility would permit recog- 
nition of and reaction to synchronous 
events such as errors, as well as to 

asynchronous events such as terminal con- 
ditions, timers, the state of concurrent 
programs, or other occurrences "external" 
to the immediate sequential environment. 

NA24ING, BINDING, ~_ND SECURITY 

One of the most attractive features 
of APL is the elegance and simplicity of 
its naming and scope rules. Dynamic 
localization and the lack of a distin- 
guished set of reserved words allow many 
programs to be relatively simple and 
straightforward. The addition of the 
quad-name conventions of APLSV allows more 
direct access and control of environmental 
and external variables and processes. 
Finally, because reference or label 
variables do not exist in the language, 
there are no lifetime or alias problems. 

This simplicity, while convenient for 
small problems, seems to work against the 
creation of secure large-scale packages. 
By "security" I mean full protection from 
modification or subversion by either the 
untrained or the malicious user. The 
various limitations related to naminq and 
binding are all reflected in the question 
of security. 

There is no way to name, and there- 
fore to access, shadowed variables and 
functions. Thus one cannot write a 
function to put temporarily unused values 
on an external medium, such as a file, in 
order to reduce space requirements. This 
inability would be even more strongly felt 
if an interrupt mechanism eMisted which 
could react to resource limitations of 
this sort. 

Contrary to popular belief, the 
"execute" function (a) does not provide a 
reliable "call by name". ?~at is missing 
is the ability to associate with a formal 
parameter the name bindings in effect at 
the point of call. Name localization can 
create anomalies when a name passed in a 
character string is shadowed, often 
inadvertently. 

VN IDENT X 
DEFINE VARIABLE NAMED IN RIGHT 
ARGUMENT AS IDESTITY MATRIX 

IX.'÷(IN)o.=IN' 
? 

called: 100 IDENT 'N' 

This name conflict can be circumvented 
only by enforcing n~ing conventions -- an 
approach that is impractical unless the 
program's only user is its creator. 

A program's local identifiers cannot 
be made "invisible" to the user. Like- 
wise, it is not possible to meld a program 
and its subprograms into an indivisible 
object. Other languages overcome these 
problems through use of compilers (which 



purge most names from the object program) 
and loaders or linkage editors (which 
combine programs and eliminate most 
remaining names). The programmer can 
control the unification of a package by 
specifying entry points, external names, 
control sections, and so forth. APL's 
need for similar facilities has been 
recognized by others (Ryan 1973, Puckett 
1974) and must be pursued further. 

The extensions of APLSV allow parts 
of the environment to be localized within 
functions. In some cases w such as printer 
width, this is too restrictive, as the 
width is more properly associated with a 
terminal session than with a function or 
workspace. In other cases, notably index 
origin, the APLSV localization is too 
weak. Rather than treat index origin as a 
local variable which must be initialized 
at each execution, its value should be 
settable when its locality is declared. 
This approach would also eliminate the 
need for "IMPLICIT ERROR". 

~ explicit ability to deal with 
names and their values would allow ration- 
alization of the workspace. With such 
functional capabilities in the language, a 
workspace becomes simply a universe of 
discourse -- that is, a set of identifiers 
bound with their values or definitions. 
What are now system-related mechanisms, 
like "LOAD" and "SAVE" would become simple 
APL functions to switch context and bind 
names to objects. Aside from simplifi- 
cation and unification, SUCh mechanisms 
would make it possible to separate naming 
problems from storage considerations. 
They would also allow much of what is 
"mysterious" about APL systems to be 
described and extended in APL. 

Naming and binding are closely tied 
to control structures. The inability to 
define lexically local functions or 
strictly local names are examples. 

In summary, the problems with naming 
in APL seem to boil down to two essen- 
tials. First there is no explicit name 
type in APL. Since they are not part of 
the universe of discourse, names cannot be 
manipulated, or described, directly. One 
of the best examples of this is in the 
"Formal Description of APL" (Lathwell and 
Mezei 1971) t where the authors were forced 
to ignore assignment, as such a descrip- 
tlon would require a way to discuss names 
and associated values. The second basic 
problem is that there is no way to control 
the scope of names, either in time (dyna- 
mic) or in context (lexical). Primitive 
facilities in this area would make 
"execute" more useful and would help in 
the rationalization of function 
definition. The ablllty to deal with 
names and scope would go a long way toward 
permitting the creation of secure 
functlons ~id applications. 

SYNTAX 

Compared to other popular programming 
languages, APL has a simple and uniform 
syntax. Although rich in primitive func- 
tions, APL has simple precedence rules 
which are a boon to novice and experienced 
programmers alike. A straightforward 
approach to function precedence is impera- 
tive for APL, since the language has 
historically grown by extending the func- 
tion set rather than by adding new syn- 
tactic statement types. Indeed there are 
but two types of executable statements in 
APL, in contrast to the large number found 
in other current languages. 

Paradoxically, it is this very 
simplicity of APL syntax that stands in 
the way of well-designed extensions to the 
language. It is difficult or impossiDle 
to introduce new constructs and stay 
within APL syntax. Try, for example, to 
design extensions for functions of more 
than two arguments, or more than one 
result; or for operators or other new 
control structures; and retain consistency 
with existing syntax rules. 

A new capability must either conform 
to the procrustean syntax of monadic and 
dyadic functions, or must escape from APL 
syntax entirely. One popular approach has 
been to enclose deviant material in 
quotes, as with the left arguments to 
formatting functions such as A~T or ~ . 

The function header is used to 
describe properties of a function -- its 
name, syntax, names of local identifiers 
-- that pertain throughout the function's 
execution. Elsewhere in this paper I have 
suggested the need to describe other 
properties of functions, such as index 
origin, strict locality of n~T.es, and 
multivalence. The current header syntax 
is inadequate for describing these 
additional properties. 

The issue of function precedence in 
APL is the single most controversial, 
e/notion-laden, and misunderstoo~ aspect of 
the language. The common confuslon of 
function precedence with order of 
execution has thoroughly mu--6~dq~e~-these two 
simple but essential notions. In the 
expression AxB+C , function precedence 
indicates that A and B+C are the 
operands of the function x . An "order 
of execution" rule, for which this is 
commonly mistaken, would also require that 
B+C be evaluated before A -- surely a 
curious requirement for × , a commutative 
function~ 

APL's right-associativity rule is 
useful primarily because it tends to 
reduce the number of parentheses required 
to write an expression, although it does 
not~necessarily minimize parentheses. 
Right rather than left associativlty was 
chosen for APL because of the right 



association of monadic functions with 
their arguments (Iverson 1966). Note, 
however, that left associativity might 
engender fewer parentheses. There is, 
however, nothing sacrosanct about 
associating arguments from only one end of 
an expression. For instance, one useful 
avenue to explore would be the use of 
short scope of right arguments, as 
described by More (1973). His dot 
notation, well-established in symbolic 
logic, might also be useful for minimizing 
parentheses in complex expressions. 

If all APL functions simply trans- 
formed their arguments without modifying 
the global state, there would be no need 
to discuss order of evaluation. This 
order could then be any that respects the 
rules of association of functions with 
arguments. The existence of side effects 
(primarily through assignment) is what has 
made it imperative to consider order of 
execution of APL programs. 

The most popular argument in favor of 
a specified order of execution, in parti- 
cular "right to left", is that it allows 
the embedding of assignments to variables 
used "later" in an expression. On the 
other side, the cult of "one-liners" has 
demonstrated how easy it is to write 
incomprehensible expressions using 
internal assignment. Uncharitable critics 
as well as overzealous practitioners have 
concentrated overmuch on this potential of 
the language (e.g. Dijkstra 1972). 
Stylistically, this kind of progra~m%ing is 
complex to reade to write, and to modify 
(Abrams 1973). Because of the side 
effects, such statements also tend to be 
difficult to debug, as they cannot be 
restarted. Having no special order of 
execution, beyond that required to respect 
association, would discourage this 
practice. Thus we would require 
evaluation of arguments before their 
passage to a function, but no further 
order would be specified. 

The other principal argument against 
defining an order of evaluation is that it 
makes it much more difficult to write 
highly efficient APL processors. If the 
sole rule is to evaluate arguments to a 
function before invoking the function, the 
processor has more liberty to permute 
operation order and to do multiple 
operations in parallel. In the absence of 
side effects, there is no ambiguity. 

P~IITIVES 

As I noted earlier, the main 
importance of APL is its development of 
the use of rectangular arrays through a 
complete and generally consistent set of 
primitive functions and operat~.~. Their 
amenability to formal treatment suggests 
that the match between data structure and 
primitives is an unusually good one. 

The definitions of some primitive 
functions are questionable. For instance, 
limiting cases of division and exponen- 
tiation ( 0÷0 and 0-0 ) do not agree 
with traditional mathematics. The 
inclusion of domino and the circular 
functions raises q~estions about what 
should and what should not be included in 
APL as primitive functions. Although 
useful in some application domains, these 
functions are relatively specialized and 
are much less fundamental than, say, 
indexing. Similarly, the ad hoc defini- 
tion and scant'powers of t~e w 
formatting function make its inclusion 
dubious. In the above cases, it miaht be 
more appropriate either to include more 
primitive constructs from which these 
functions might be defined conveniently, 
or to find more general functions from 
which these fall out as special cases. 

Some functions are not yet general 
enough. Both expansion and "overtake" 
would be more useful if it were possible 
to specify an arbitrary fill sequence. 
When using expansion, one often regrets 
the lack of the "mesh" function of early 
versions of APL (Iverson 1962). The 
"take" function is overburdened in that it 
perf6rms both selection and extension, 
depending on the value of its left 
argument. It might be preferable to 
separate the two functions. 

There is a need for general string 
manipulation primitives. In particular, 
search and substitution functions would be 
useful. The inability to manipulate sub- 
script lists is a problem of both data 
structures and primitives that lack. 

The dyadic iota function has its 
arguments in the wrong order. Presently, 
the "universe" to be searched is the left 
argument, as is true of the characteristic 
function, e • Furthermore, the universe 
is the argument most likely to be an 
expression. If arguments were inter- 
changed, a pair of parentheses could often 
be eliminated and readability improved. 
For example, contrast (STRING~' t)~1 
(present form) with I~STRING~' t 
(proposed form). With this approach, the 
shape of the result is the same as the 
shape of the function's left argument, as 
is now tz~e for ~ • 

No criticism of APL primitives would 
be complete without questioning the use of 
subscripts on functions and operators. 
Why should subscripts used here follow the 
index origin? The use of nonintegral 
subscripts in lamination is not only 
confusing and ugly, but also demolishes 
the notion that subscripts on primitives 
are somehow "indexing" something, and so 
should follow the rules for array indices. 
Finally, that reduction on a scalar argu- 
ment works only if the subscript is elided 
and not at all if it is written explicitly 
is almost comical. 



CONCLUSION 

The casual reader of this paper may 
get the impression that APL is so fraught 
with problems as to be practically 
useless~ To the contrary, though it has 
faults and failings, APL remains an 
unusually clean, consistent, and practical 
language. 

We must ask, however, how much 
further can the development and extension 
of APL go? At some point, new features 
and extensions appear "grafted on". It 
becomes harder and harder to design 
elegant, natural extensions that harmonize 
with the existing structure. To date, 
most proposed generalizations of APL have 
raised at least as many new problems as 
they have purported to remedy. 

Perhaps this effect reaffirms the 
elegance and solid good design of the base 
language. What sculptor would attempt to 
improve on Michelangelo's "David"? 
Thinking in terms of extensions and 
generalizations, we must pose a multitude 
of questions. To what extent do the 
decisions of the past, right or wrong, and 
the hypotheses upon which APL is built, 
constrain further development of the 
language? 

The danger of not recognizing when to 
stop adding features to a language has 
already been demonstrated by the history 
of FORTRAN, BASIC, COBOL, and PL/I. To 
what extent are we willing (or unwilling) 
to change or even question earl~-design 
decisions and assumptions in order to 
maintain compatibility? Is it worse to 
continue further extensions and adding new 
features and try to pretend that the 
result is still APL? When is APL not APL? 

Maybe the wisest strategy is to leave 
well enough alone and stop tampering with 
the language. RecognizingAPL's strengths 
and shortcomings, perhaps the next step is 
to begin anew from fundamentals to create 
a language that is to APL as APL is to 
FORTRAN. 

Is there anyone who can perform the 
same leap of genius which gave rise to 
APL? Are we ready for this next step when 
it happens? Or has APL conservatism 
blinded us to new ideas? 

POST SCRIPTUM 

A lot of questions are raised in this 
paper. I hope readers will be encouraged 
to seek answers. APL could not have been 
created, nurtured, and brought to maturity 
wlthout a certain singlemindedness of pur- 
pose on the part of many devoted people. 
It is, in large part, the transformation 
of this dedication of early workers into 
parochlalism in others which prompted me 
to write this paper. 

The opinions expressed here ~re 
wholly my own, and may not reflect the 
position of any other person or organ- 
ization. I wish to thank the several 
friends and colleagues who have helped me 
to refine my thoughts and words to this 
stage. A special appreciation goes to 
Lawrence M. Breed for many fruitful dis- 
cussions that contributed substantially to 
the form and the content of the work 
presented here. 
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